(34.236.244.39) 您好!臺灣時間:2021/03/09 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王曉怡
研究生(外文):siao-yi Wang
論文名稱:厭氧生物降解龍鬚菜產甲烷程序最佳化之探討
論文名稱(外文):Optimization of methane production from anaerobic biodegradation of Gracilaria
指導教授:黃啟裕黃啟裕引用關係
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:128
中文關鍵詞:生質能龍鬚菜海藻甲烷
外文關鍵詞:biomass energyGracilariaseaweedmethane
相關次數:
  • 被引用被引用:5
  • 點閱點閱:485
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以中台灣高美濕地之沉積底泥中,培養出降解海藻產甲烷之中溫厭氧混合菌群。此厭氧菌群以龍鬚菜之海藻多糖為主要碳源,以批次方式培養在不同溫度、鹽度、pH值、生長輔因子(yeast extract, peptone)、碳源、不同海藻多醣來源之條件下生長。根據結果顯示此厭氧生物降解海藻產甲烷之最佳溫度、鹽度與pH值分別為35oC、0 %與pH 7.1,而最佳碳源(龍鬚菜)添加濃度為4 g/L;此外生長輔因子(yeast extract,peptone)皆有促進之結果,而以yeast extract有較佳的刺激生長作用;再由最佳條件下進行不同藻類之降解產甲烷研究,此厭氧菌群無法顯著地將馬尾藻之藻體降解,但可利用其溶出之海藻多醣,而龍鬚菜則可被降解至破碎薄片狀;以最佳化反應條件培養時,有最高之海藻降解速率為0.84±0.08 g.L-1.day-1,且可生成最高1431.20±99.65 mmole之甲烷生成,其甲烷生成速率為210.02±24.15 mmole.day-1,反應液之主要中間產物為醋酸,最高可生成29.96±1.04 mmole醋酸,產率為16.11±0.14 mmole.g seaweed-1。
Mesophilic anaerobic biodegradation of seaweed by mixed microorganisms from Kaomei wetland sediment at Central Taiwan was investigated in this study. Gracilaria was used as the sole carbon source for methane production by the mixed culture. Batches of the mixed culture were grown at different conditions such as different temperatures, sodium chlorides, pH’s, growth factors, carbon sources and various sources of algal polysaccharides from seaweed to determine the optimal conditions for methane production from seaweed bioconversion. The optimal temperature, sodium chloride concentration and pH value for bioconversion of seaweed to methane was 35oC, 0 % and pH 7.1, respectively. The optimal substrate concentration for methane production was 4 g/L of Gracilaria. Both growth factors yeast extract and peptone could stimulate bacterial growth with yeast extract giving the better effect. Sargassum could not be degraded by the mixed culture at the optimal conditions,. The highest seaweed degradation rate, methane yield and methane production rate by the mixed culture were 0.84±0.08 g.L-1.day-1, 1431.20±99.65 mmole and 210.02±24.15 mmole.day-1 respectively. Acetic was found to be the major product in the liquid phase during Gracilaria biodegradation. The highest acetate yield is 16.11±0.14 mmole.g seaweed-1.
第一章 前言
1.1 研究動機
1.2 研究目的
第二章 文獻回顧
2.1 再生能源
2.1.1 能源現況
2.1.2 生質能(Biomass energy)
2.1.3 生質能與碳循環
2.1.4 生質能源產生方式
2.2 海藻(Seaweed)
2.2.1 海藻之利用
2.2.2 臺灣海藻資源
2.2.3 海藻組成
2.3 海藻多醣來源
2.3.1 紅藻(Rhodophyceae)
2.3.2 綠藻(Chlorophyceae)
2.3.3 褐藻(Phaeophyceae)
2.4 海藻多醣結構
2.4.1 洋菜(Agar)
2.4.2 褐藻膠(Alginate)
2.4.3 鹿角菜膠(Carrageenan)
2.5 分解海藻多醣之agarase
2.5.1 來源
2.5.2 分類與分解方式
2.6 海藻厭氧生物轉化(Anaerobic bioconversion of seaweed)
2.7 生物甲烷(Biogas)燃料與應用
2.8 厭氧醱酵化學
2.9 厭氧生物處理之影響因子
2.9.1 溫度
2.9.3 鹽度
2.9.2 pH值
2.9.3 輔因子
2.9.4 碳源種類
第三章 實驗材料與方法
3.1 實驗流程設計
3.2 菌種來源採樣
3.3 菌種培養
3.3.1 Hungate 除氧系統
3.3.2 厭氧操作台
3.3.3 厭氧培養基
3.3.4 菌群培養
3.4 分析方法與儀器
3.4.1 菌群生長分析
3.4.2 甲烷生成量分析
3.4.3 海藻重量分析
3.4.4 總糖分析
3.4.5 還原糖分析
3.4.6 液相成分分析
3.5 轉化甲烷程序最適化探討
3.5.1 生長溫度
3.5.2 生長鹽濃度
3.5.3 生長pH值
3.5.4 生長輔因子
3.5.5 不同海藻濃度
3.5.6 不同藻類利用
第四章 實驗結果與討論
4.1 龍鬚菜降解混合菌群增富(Enrichment)
4.1.1 海藻降解測試
4.1.2 甲烷生成測試
4.2 反應程序最適條件探討
4.2.1 溫度
4.2.2 鹽濃度
4.2.3 pH值
4.2.4 生長輔因子添加(Growth factor)
4.3 藻類濃度對甲烷生成之影響探討
4.4 不同藻類之利用探討
4.6 最佳反應條件下之液相產物探討
第五章 結論與建議
5.1 結論
5.2 建議
第六章 參考文獻
Ajisala, Tetsuro and Young-Meng Chiang. 1993. Recent status of Gracilaria cultivation in Taiwaan. Developments in Hydrobiology-Fourteenth International Seaweed Symposium. Hydrobiologia 260/261, 335-338.
Araki, C. and K. Arai. 1954. Studies on agar-digesting bacteria. The isolation of agar-digesting bacteria and enzymatic activities. Memoirs. Faculty of Industrial Arts. Kyoto Technical University. Sciences and Technology, 3B, 7-23.
Arasaratnam, V., A. Senthnuran, and K. Balasubramaniam. 1996. Supplementation of whey with glucose and different nitrogen sources for lactic acid production by Lactobacillus delbrueckii. Enzyme and Microbial Technology, 19, 482-486.
Arne Jensen. 1993. Present and future needs for algae and algal products. Developments in Hydrobiology-Fourteenth International Seaweed Symposium. Hydrobiologia 260/261, 15-23.
Bhatia R. 1990. Diffusion of renewable energy technologies in developing countries: a case study of biogas engines in India. World Dev., 18, 575-590
Cardoso, Marco A., Miguel D. Noseda, Mutue T. Fujii, Rosiane G. M. Zibetti and Maria E. R. Duarte. 2007. Sulfated xylomannans isolated from red seaweeds Chondrophycus papillosus and C. flagelliferus (Ceramiales) from Brazil. Carbohydrate Research, 342, 2766-2775
Chynoweth, D. P., K. F. Fannin and V. J. Srivastava. 1987. Biological gasification of marine algae. In: Bird, KT, Benson, PH (eds), Seaweed cultivation for renewable resources. Elsevier, Amsterdam, 285-295.
Draget, K. I. and Skjåk-Bræk and Smidsrød. 1997. Alginate based new materials. International Journal of Biological Macromolecules, 21, 47-55.
Dubois, M. K., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28(3), 350-356.
Estevez, José M., Marina Ciancia and Alberto S. Cerezo. 2008. The system of sulfated galactans from the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta): Location and structural analysis. Carbohydrate Polymers, 73, 594-605
Faaij, A.P.C. 2006. Bio-energy in Europe:changing technology choices. Energy Policy, 34, 322-342.
Ghosh, S., D. L. Klass, D. P. Chynoweth. 1981. Biconversion of Macrocystis pyrifera to methane. J. Chem. Tech. Biotechnol., 31, 791-807.
Ha, J. C., G. T. Kim, T. K. Oh, J. H Yu and I. S. Kong. 1997. β-Agarase from Pseudomonas sp. W7: Purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnology of Applied Biochemistry, 26, 1-6.
Haik, G. D. and S. K. Rekshik. 2003. Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89, 17-37.
Henze, M., Harremoës P., Jansen J. C. and Arvin E. 1997. Wastewater treatment. Biological and chemical processes. Springer Verlag, Berlin Heidelberg.
Horn, Svein Jarle. 2000 Bioenergy from brown seaweeds. A PH. D. thesis, Norwegian University of Science and Technology, Norway.
Hu, Z. H., G. Wang and H. Q. Yu. 2004. Anaerobic degradation of cellulose by rumen microorganisms at various pH values. Biochemical Engineering Journal, 21, 59-62.
Huang, C. Y., B. K. Patel, R. A. Mah and L. Baresi. 1998. Caldicellulosiruptor owensensis sp. Nov., an anaerobic, extremely thermopilic, xylanolytic bactium. International Journal of Systematic Bacteriology, 48, 91-97.
Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: J. R. Norris and D. W. Ribbons(ed.), Methods in Microbiology, vol.3b, Academic Press, Inc., New York. pp. 117-132.
Ito, K. and K. Hori. 1989. Seaweed: Chemical composition and potential food uses. Food Reviews International, 5, 101-104.
Itoh, T. 2003. Taxonomy of nonmwthanogenic hyperthermophilic and related thermophilic archaea. Journal of Bioscience and Bioengineering, 96, 203-212
Jiang, B., S.N. Parshina, W. vanDoedburg, B. P. Lomans and A. J. M. Stams. 2005. Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. International Journal of Systematic and Evolutionary Microbiology, 55, 465-2470.
Joulian, C., B. K. C. Patel, B. Ollivier, Jean-Louis Garcia and P. A. Roger. 2000. Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. International Journal of Systematic and Evolutionary Microbiology, 50, 525-528.
Khotimchenko, S. V. and E. V. Levchenko. 1997. Lipids of the red alga Gracilaria verrucosa (Huds.) Papenf. Botanica Marina, 40, 541-545.
Lai, M. C., S. C. Chen, C. M. Shu, M. S. Chiou, C. C. Wang, M. J. Chuang, T. Y. Hong, C. C. Liu, L. J. Lai and J. J. Hua. 2002. Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. International Journal of Systematic and Evolutionary Microbiology, 52, 1799-1806.
Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annual Review of Microbiology, 49, 399-426.
Lim, Daniel. 1998. Microbiology, second edition. WCB/McGraw-Hill Companies, Inc. New York.
Ma, Kai, Xiaoli Liu and Xiuzhu Dong. 2006. Methanosaeta harundinacea sp. nov., a novel acetate scavenging methanogen isolated from a UASB reactor. International Journal of Systematic and Evolutionary Microbiology, 56, 127-131.
Maeshige, S. 1962. Chemical studies on the green alga, Monostroma nitidum wittrock-I. Component sugars of the mucilage (part 1). Bulletin of the Japanese Society of Scientific Fisheries, 28, 326-334.
Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428.
Mosier, N., R. Hendrickson, N. Ho, M. Sedlak and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stver. Bioresource Technology, 96, 1986-1993.
Murphy, J. D. and K. McCarthy. 2005. The optimal production from energy crops and wastws for use as a teansport fuel in Ireland. Renewable Energy, 30, 2111-2127.
Niehaus, F., C. Bertoldo, M. Kahler and G. Antranikina. 1999. Extremophiles as a source of novel enzymes for industrial application. Applied Microbiology and Biotechnology, 51, 711-729.
Renn, D. 1997. Biotechnology and the red seaweed polysaccharide industry: Status, needs and prospects. Trends in Biotechnology, 15(1), 9-14
Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Molec. Biol. Reviews., 61, 262-280.
Shlimon, Adris Georgis, Michael W. Friedrich, Helge Niemann, Niels Birger Ramsing and Kai Finster. 2004. Methanobacterium arhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). International Journal of Systematic and Evolutionary Microbiology, 54, 759-763.
Sowers, K. R. andH. J. Schreier(ed.). 1995. Archaea a laboratory manual: Methanogens. Cold Spring Harbor Laboratory, USA, pp. 93-94.
Sugano, Y., I. Terada, M. Arita, M. Noma and T. Matsumoto. 1993. Purification and characterization of a new agarase from marine bacterium, Vibrio sp. strain JT0107. Applied and Environmental Microbiology, 59(5), 1549-1554.
Tsai, W. T., Y. H. Chou and Y. M. Chang. 2004. Progress in energy utilization from agrowastes in Taiwan. Renewable and Sustainable energy Reviews, 8, 461-481.
Usov, A. I. 1992. Sulfated polysaccharides of the red seaweeds. Food Hydrocolloids, 6(1), 9-23.
VaÂradyovaÂ, Z., I. ZelenÏaÂk and P. Siroka. 2000. In vitro study of the rumen and hindgut fermentation of fibrous materials (meadow hay, beech sawdust, wheat straw) in sheep. Animal Feed Science and Technplogy, 83, 127-138.
Velde, Fred van de. 2008. Structure and function of hybrid carrageenans. Food Hydrocolloids, 22, 727–734
Vera, J., R. Alvarez, E. Murano, J. c. Slebe and O. Leon. 1998. Identification of a Marine Agarolytic Pseudoalteromonas Isolate and Characterization of Its Extracellular Agarase. Applied and Environmental Microbiology, 65(11), 43778-4383.
Vergara-Fernańdez, Alberto, Gisela Vargas, Nelson Alarcón and Antonio Velasco. 2007. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and bioenergy, XX, XXX-XXX.
Yang, Y., K. Tsukahara, T. Yagishita and S. Sawayama. 2004. Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose. Bioresource Technology, 94, 197-201.
王創正。2006。廢棄有機污泥以連續批次厭氧消化產氫及甲烷研究。長榮大學職業安全與衛生學系碩士論文,
行政院國家科學委員會。2006。2006年政府科技發展策略規劃報告。
行政院農業委員會漁業署漁業資訊網  http://www.fa.gov.tw/chn/index.php
吳季芳。2006。以澱粉為碳源基質進行生物產氫。成功大學化學工程系碩士論文。
吳耿東,李宏台。2004。生質能源化腐朽為能源。科學發展,383期,20-27。
吳淑娟、周宏農。1991。龍鬚菜的市場情況分析。中國水產。460期,7-16。
李承芳。2005。Alterococcus 洋菜酶基因的選殖與分析。東吳大學微生物研究所碩士論文。
林柏丞。2004。滾管型複製的嗜鹽甲烷古生菌質體pML之rep基因及其表現蛋白質的分析。國立中興大學生命科學研究所碩士論文。
徐維廷。2007。纖維水解菌群中嗜熱產氫菌Clostridium sp. C4之分離及其產氫特性研究。東海大學環境科學與工程研究所碩士論文。
馬盈瑜。2003。龍鬚菜多醣及其水解產物生理活性之探討。國立屏東科技大學食品科學系博士學位論文。
袁景道。2001。海洋細菌Pseudomonas vesicularis MA103之agarase發酵槽生產條件探討以及海藻多醣與經酵素水解所得寡糖之應用。國立臺灣海洋大學食品科學研究所碩士論文。
張添晉。2000。沼氣控制與回收再利用技術,行政院環境保護署八十九年度委辦計畫,封閉垃圾場復育綠美化執行成效評估。
陳建翰。2006。造紙廢水中嗜熱厭氧纖維素降解菌群解構分析及嗜熱甲烷菌之分離與鑑定。東海大學環境科學與工程研究所碩士論文。
陳再發、紀美連、洗宜樂、薛月娥。1989。海藻化學組成、原料貯藏及加工之研究。臺水試澎所報彙集。8期。57-68。
臺灣海藻資訊網(Seaweed net of Taiwan) http://www.ntm.gov.tw/seaweeds/home.asp
彭子倩。2005。 光度、溫度及鹽度對於螺旋藻多醣體(膠質)之影響。國立台灣海洋大學水產養殖研究所碩士論文。
黃美燕。2006。嗜熱厭氧生物降解纖維素產甲烷程序最佳化探討。東海大學環境科學與工程研究所碩士論文。
賴美津。2006。厭氧環境的甲烷古菌。科學月刊,436期,270-273。
盧樂人。2003。能源使用、就業、經濟成長與景氣循環,中原大學國際貿易學系碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔