跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 15:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王重鈞
研究生(外文):Chung-Chun Wang
論文名稱:電解銦錫氧化物廢靶材與銦金屬回收之研究
論文名稱(外文):Electrolyzing and recycling indium from ITO waste target
指導教授:段葉芳段葉芳引用關係
口試委員:楊勝俊林岩錫
口試日期:2008-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:63
中文關鍵詞:ITO廢靶材電解回收率
外文關鍵詞:waste ITO targetindiumelectrolysisrecovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:744
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以鹽酸溶解ITO廢靶材(銦錫氧化物)、金屬置換和電解來回收銦金屬的方法已經在很多研究中提及,但這些方式既花時間亦須將玻璃磨碎後再從鹽酸中萃取出銦。在新的方法中我們改採以有機電解液電解分離ITO層與玻璃,這樣就可以既回收銦金屬又同時完整地回收玻璃基材。
同時討論了酸溶解、銦錫分離和電解的影響因素。得出鹽酸溶解用量為理論用量的1.5∼3倍,溶解溫度在80 ℃時靶材溶解迅速徹底。
當溫度達到50 ℃時,溶液中的銦離子可與鋁進行金屬置換,然後在溶液表面得到海綿銦。為避免氧化,海綿銦可以氫氧化鈉覆蓋再加熱得到粗銦(包含純銦與氧化銦),最後電解電鍍粗銦來得到純銦金屬。
Recovery indium from waste ITO (Indium-Tin-Oxide) target is studied by hydrochloric acid dissolving, metals substituting and electrolyzing. But it takes time and always has to mash the glass for lixiviating ITO into the hydrochloric acid. In the novel way we use electrolyzing with organic electrolyte to separate ITO film and glass. Therefore we can recovery indium from waste ITO and also recycling the glass.
It is concluded that waste ITO target has a good dissolvability in hydrochloric acid with the quantity of hydrochloric acid being 1.5∼3 times more than the theoretical one, and the optimum temperature for dissolving is 80 ℃, at which theITO target is dissolved quickly and thoroughly.
When the temperature of solution reaches 50 ℃, In3+ in the solution could be substituted by aluminum, then gain sponge indium on the surface of indium chloride solution. Sponge indium should be heated covered by NaOH prevented the oxidization to get unrefined indium (included pure indium and indium oxide). We electrolyze unrefined indium to obtain pure metal indium.
中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 銦金屬 2
1.2.1 簡介與運用 2
1.2.2 國際供需發展 4
1.2.3 2007年國際銦錠市場 5
1.2.4 國內銦來源及規模 7
1.2.5 國內現階段處理方式 10
1.3 研究背景與目的 10
第二章 文獻回顧 11
2.1 現有ITO層移除技術 11
2.2 銦錫氧化薄膜 13
2.2.1 銦錫氧化薄膜簡介 13
2.2.2 氧化銦錫薄膜電性 14
2.2.3 薄膜電化學特性 15
2.3 化學置換反應之分析 17
2.3.1 固液相之氧化還原反應 17
2.3.2 重金屬離子於水溶液中之平衡行為 19
2.3.3 影響化學置換反應之因素 20
2.3.3.1 pH效應 20
2.3.3.2 起始濃度效應 22
2.3.3.3 溫度效應 23
2.3.3.4 攪拌效應 23
2.4 伏安分析法 24
2.4.1 循環伏安法概述 24
2.4.2 可逆體系下的循環伏安掃描 25
2.4.3 不可逆體系下的循環伏安掃描 28
2.5 X光繞射原理 28
第三章 實驗設備和步驟 30
3.1 實驗藥品 30
3.2 實驗設備及儀器裝置 30
3.2.1 實驗設備 30
3.2.2 儀器裝置圖 31
3.2.2.1 電解槽 31
3.2.2.2 酸溶解裝置 31
3.2.2.3 電化學分析儀 33
3.2.2.4 金屬置換裝置 33
3.2.2.5 四點探針導電度儀 34
3.3 實驗方法及步驟 35
3.3.1 實驗流程圖 35
3.3.2 實驗步驟 36
3.3.2.1 ITO廢靶材前處理 36
3.3.2.2 電解分離ITO玻璃ITO層 36
3.3.2.3 以無機酸溶解沉澱物 36
3.3.2.4 循環伏安法測試 36
3.3.2.5 金屬置換銦 37
3.3.2.6 XRD測試 38
第四章 結果與討論 39
4.1 光學顯微鏡圖 39
4.2 循環伏安法測試 40
4.2.1 不同掃描速率下循環伏安法測試 40
4.2.2 不同掃描圈數循環伏安法測試 41
4.2.3 不同濃度下循環伏安法測試 42
4.2.4 不同pH值下循環伏安法測試 43
4.3 金屬置換銦 44
4.3.1 室溫下金屬置換銦 44
4.3.2 40℃下金屬置換銦 45
4.3.3 50℃下金屬置換銦 47
4.3.4 70℃下金屬置換銦 48
4.3.5 不同溫度與不同時間比較 50
4.4 XRD測試 51
4.5 反應機構 52
4.5.1 電解反應機構 52
4.5.2 金屬置換反應機構 53
第五章 結論與建議 54
參考文獻 56
附錄 60
[1]梁杏初、姚吉升,廣東有色金屬學報,第12卷,2002,第7頁。
[2]陳堅、姚吉升、周友元等,「ITO廢靶回收金屬銦」,稀有金屬,第27卷,第1期,2003,第101頁。
[3]段學臣等,稀有金屬,第2期,1998,第396頁。
[4]Je-Hsiung Lan, Jerzy Kanicki, Anthony Catalano, James Keane, Willem Den Boer and Tieer Gu, Journal of Electronic Materials, vol. 25, no. 12, 1996, pp. 1806-1817.
[5]H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H.Kafafi, and D.B. Chrisey, Appl. Physics Letters, vol. 74, no. 23, 1999, pp. 3444-3446.
[6]James R. Sheats, Homer Antoniadis, Mark Hueschen, William Leonard, Jeff Miller, Ron Moon, Daniel Roitman and Andrew Stocking, Science, vol. 273, 1996, pp. 884-888.
[7]R. Tueta and M. Braguier, Thin Solid Films, no. 80, 1981, pp. 143-148.
[8]V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, and S. R. Forrest, M. E. Thompson, Appl. Physics Letters, vol. 70, no. 22, 1997, pp.2954-2956.
[9]P. W. M Blom, M. J. M. Dejong, C. T. H. F. Liedenbaum, and J. J. M. Vleggaar, Synthetic Metals, no. 85, 1997, pp. 1287-1288.
[10]P. W. M Blom and M. J. M. Dejong, Philips J.Res., no. 51, 1998, pp. 479-494.
[11]C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Physics Letters, vol. 70, no. 11, 1997, pp. 1348-1350.
[12]Ching-Ian Chao, Kuen-Ru Chuang, and Show-An Chen, Appl. Physics Letters, vol. 69, no. 19, 1996, pp.2894-2896.
[13]T. J. Dishoungh, M. Dube, M. Pecht, and J. Wyler, Transactions of ASME Journal of Electronic Packaging, vol. 121, 1999, pp. 126-127.
[14]T. Osada, Th. Kugler, P. Broms, and W. R. Salaneck, Synthetic Metals, no. 96, 1998, pp. 77-80.
[15]Shinich Honda, Michio Watamori, Kenjiro Oura, Thin Solid Films, no. 281-282, 1996, pp.206-208.
[16]Hiroshi Morikawa, and Miya Fujira, Thin Solid Films, no. 359, 2000, pp. 61-67.
[17]C. H. L. Weijtens, J.Electrochem.Soc., vol. 138, no. 11, 1991, pp. 3432-3434.
[18]Masatoshi Higuchi, Shinichiro Uekusa, Ryotaro Nakano, and Kazuhiko Yokogawa, Journal of Applied Physics, vol. 74, no. 11, 1996, pp. 6710-6713.
[19]D. V.Morgan, Y. H. Aliyu, R. W. Bunce, and A. Salehi, Thin Solid Films, no. 312, 1998, pp. 268-272.
[20]Byung Hak Lee, Iee Gon Kim, Sung Woo Cho, and Si-Hyun Lee, Thin Solid Films, no. 302, 1997, pp. 25-30.
[21]Klyoshi, Sugiyama, Hisao Ishij, and Yukio Ouchi, Kazuhiko Seki, Journal of Applied Physics, vol. 87, no. 1, 2000, pp.295-298.
[22]S. M. Tadayyon, K. Griffiths, P. R. Norton, C. Tripp, and Z. Popovic, J. Vac. Sci. Technol. A, vol. 17, no. 4, 1999, pp. 1773-1778.
[23]P. Thilakan and J. Kumar, Vacuum, vol. 48, no. 50, 1997, pp. 463-466.
[24]A. Salehi, Thin Solid Films, no. 324, 1998, pp. 214-218.
[25]G. Folcher, H. Cachet, M. Froment, and J. Bruneaus, Thin Solid Films, no. 301, 1997, pp. 242-248.
[26]F. Nuesch, L. J. Rorhberg, E. W. Forsythe, Quoc Toan Le, and Yong-I Gao, Appl. Physics Letters, vol. 74, no. 6, 1999, pp. 880-882.
[27]Q. T Le, E. W. Forsythe, F. Nuesch, L. J. Rorhberg, L. Yan, and Y. Gao, Thin Solid Films, no. 363, 2000, pp. 42-46.
[28]W. Badawy, K. Doublhofer, I. Elselt, H. Gerischer, S. Krause, and J. Melsheimer, Electrochemica Acta., vol. 29, no. 12, 1984, pp. 1617-1623.
[29]J. Bruneaux, H. Cachet, M. Froment, J. AmBlard, and M. Mostafavi, J.Electroanal. Chem., vol. 269, 1989, pp. 375-387.
[30]Albertas Malinauskas, and Rudolf Holze, Electrochimica Acta, vol. 43, no. 18, 1998, pp. 2563-2575.
[31]P. M. S. Monk, and Che M. Man, Journal of marterials science:materials in electronics, vol. 10, 1999, pp. 101-107.
[32]Peter M. M. C. Bressers and Eric A. Meulenkamp, J.Electrochem.Soc., vol. 145, no. 7, 1998, pp. 2225-2230.
[33]Nadkarni, R. M. and Wadsworth, M. E., “A Kinetic Study of Copper Precipitation on Iron-PartII,” Transaction Metallurgy Society, AIME, vol. 239, 1967, pp. 1066-1075 .
[34]Gould, J. P., Escover, I. B. and Khudenko, B. M., “Examination of the Zinc Cementation of Cadmium in Aqueous Solutions,” Water Science& Technology, vol. 19, 1987, pp. 333-335.
[35]T. Agelidis, K. Fytianos, G. Vasilikiotis and D. Jannakoudakis, “Kinetic Study of Lead Cementation by Iron Powder in Wastewater,” Chemosphere, vol. 8, 1985, pp. 1001-1006 .
[36]A. L. Anacleto, J. R. Carvalho, “Mercury Cementation from Chloride Solution Using Iron, Zinc and Aluminium,” Minerals Engineering, vol. 9, no. 4, 1996, pp. 385-397.
[37]Hsu, Y. J. and Tran, T., “Selective Removal of Gold from Copper-Gold Cyanide Liquors by Cementation Using Zinc,” Minerals Engineering, vol. 9, no. 1, 1996, pp. 1-13.
[38]S. S. Djokic, “Cementation of Copper Aluminum in Alkaline Solution,” Journal of Electrochemical Society, vol. 143, no. 4, 1996, pp. 1300-1305.
[39]P. H. Strickland and F. Lawson, “The Measurement and Interpretation of Cementation Rate Data,” In International Symposium on Hydrometallurgy, vol. 236, 1973, pp. 293-330.
[40]E. C. Lee, F. Lawson, and K. N. Han, “Precipitation of Cadmium with Zinc from Dilute Aqueous Solution: 1-under an Inert Atmosphere,” Transaction of the Institution of Mining and Metallurgy, vol. 84, 1975, pp. 87-91.
[41]J. A. P. Mathes, F. Lawson and D. R. Canterford, “The Cementation of Uncomplexed Silver Ions onto Zinc and onto Ferrous Alloys,” Hydrometallurgy, vol. 14, 1985, pp. 1-12.
[42]S. A. Nosier and S. A. Sallam, “Removal of Lead Ions from Wastewater by Cementation on a Gas-Sparged Zinc Cylinder,” Separation and Purification Technology , vol. 18, 2000, pp. 93-101.
[43]H. H. Nguyen, T. Tran and P. L. M. Wong, “Copper Interaction During the Dissolution of Gold,” Minerals Engineering, vol. 10, no. 5, 1997, pp.491-505.
[44]V. Van der Pas and D. B. Dreisinger, “A Fundamental Study of Cobalt Cementation by Zinc Dust in the Presence of Copper and Antimony Additive,” Hydrometallurgy, vol. 43, 1996, pp. 187-205.
[45]A. Z. Mahmoud, “Effect of Surface-Active Substance on the Rate of Production of Copper Powder from Copper Sulphate Solutions by Cementation on Zinc Rods in Gas Sparged Reactors,” Hydrometallurgy, vol. 41, 1996, pp. 231-242.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊