跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連國智
研究生(外文):Guo-Jhih Lian
論文名稱:方形溝漕中兩層流體於入口段共擠流動特性分析
論文名稱(外文):Flow Characteristic Analysis for Two-Layered Fluids in the Entry section of a Rectangular Channel
指導教授:蘇淵源
指導教授(外文):Yuan-Yuan Su
口試委員:芮祥鵬白志中
口試日期:2008-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:123
中文關鍵詞:柏格流體界面波
外文關鍵詞:Boger fluidinterfacial wavescross spectralbicohernece spectral
相關次數:
  • 被引用被引用:1
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以高黏彈性流體(柏格流體)及黏度相近的牛頓流體分別與24.8%鹽水進行配對,並行流進寬厚比28:1之方形溝槽中,探討界面波的形成機制及行為,並利用高速攝影機搭配影像擷取與軟體去決定界面產生波動的介穩線。實驗顯示入口段的擠壓會造成界面波的產生,而我們亦以擾動漩渦理論及擾動能量理論來解釋此形成的機制。接著以高階頻譜分析及pule shift技巧來計算界面波的波速及群速。且由bicoherence spectral證實主要波和各簡諧波之間有能量傳遞的行為。最後我們更證明入口段界面波的成長是屬非線性可描述之系統。
A highly viscoelastic fluid (Berger’s fluid) or a Newtonian fluid with equivalent viscosity is respectively paired with 24.8% saline, flowing parallel into a channel with a width-thickness ratio of 28:1, to study the formation mechanism and behavior of the interfacial waves. A high speed camera with image capture and software was used to determine the neutral stability line of interfacial wave generations. The experiment revealed the interfacial wave originates at the exit of co-extrusion die. The disturbance vortex theory and the disturbance energy theory are used to explain the mechanism of interfacial wave growth. Higher order cross spectral and pulse shift techniques is implemented to determine the wave speed and group velocity of interfacial waves. Energy transfer between leading harmonic and overtones is confirmed by bi-coherence spectral. Finally we demonstrate that the growth of interfacial wave near the die exit can not be described by the linear stability analysis.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
符號彙編 xii
第一章 緒論 1
1.1 前言 1
1.2 目的與動機 2
1.3 機構及原理 4
1.3.1 Poiseuille flow及Couette flow的介紹 4
1.3.2 穩定度機構 5
第二章 文獻回顧 7
2.1 界面波的研究 7
2.2 界面穩定度理論分析 9
2.3 界面穩定度實驗 12
第三章 理論分析 16
3.1 線性理論分析 16
3.2 高階頻譜分析 19
3.2.1 Power spectrum 19
3.2.2 Bispectrum and bicoherence 19
3.2.3 Cross spectrum 20
第四章 實驗設備與分析方法 21
4.1 實驗流體 21
4.2 分析儀器 21
4.3 流變測定 23
4.4 實驗裝置 25
4.5 實驗分析方法 26
第五章 結果與討論 33
5.1 介穩線及界面波之動態行為 38
5.2 界面波特性分析 54
5.2.1 界面波的能量強度及傳遞行為 54
3.2.2 界面波行為之探討 77
3.2.3波空間成長速率分析及屬線性或非線性之界定 93
第六章 結論 115
參考文獻 116
附錄A 120
矽油-24.8%鹽水系統時間-振幅圖 120
柏格-24.8%鹽水系統時間-振幅圖 122
1.Russell, T. W. F., Hodgson, G. W. and Govier,
G.W., “Horizontal Pipeline Flow of Mixtures of Oil and
Water,” J. Chem. Eng. Vol. 37, pp. 9-17 (1959).
2.Charles, M. E. and Lilleleht, L. U., “Co-current
Stratified Laminar Flow of Two Immiscible Liquids in a
Rectangular Conduit,” J. Chem. Eng. Vol. 43, pp. 110-116
(1965).
3.Cohen, L. S. and Hanratty, T. J., “Generation of waves
in the concurrent flow of air and a liquid” AIChE J.
Vol. 11, pp. 138-144 (1965).
4.Hanratty, T. J., and Engen, J. M., “Interaction between
a Turbulent Air Stream and a Moving Water Surface,”
AIChE J. Vol. 3, pp. 299-304 (1957).
5.Masayoshi Miva, Woodmansee, D. E., Hanratty, T. J. “A
model for roll waves in gas-liquid flow,” Chem. Eng.
Sci. Vol. 26, Issue 11, November, pp.1915-1931(1971).
6.Bruno, K. and McCready, M.J. “Origin of roll waves in
horizontal gas-liquid flows,” AIChE J. Vol. 34, pp. 1431-
1440(1988).
7.Lin, P. Y. and Hanratty, T. J. “Prediction of the
initiation of slugs with linear stability theory,” J.
Multiphase Flow Vol.12, No.1, pp. 79-98(1986).
8.N. Andritsos and Hanratty, T. J. “Interfacial
instabilities for horizontal gas-liquid flows in
pipelines,” J. Multiphase Flow Vol.13, No.5, pp. 583-603
(1987).
9.Peng C. A., Jurman L. A. and McCready M. J., “Formation
of Solitary Waves on Gas-sheared Liquid Layers,”Int. J.
Multiphase Flow Vol. 17, pp. 767-782 (1991).
10.Jurman, L. A., Deutsch, S. E. and McCready, M. J.,
“Interfacial Mode Interactions in Horizontal Gas-liquid
Flows,” J. Fluid Mech. Vol. 238, pp.187-219 (1992).
11.Balmforth, N. J., Bush, J. W. M. and Craster R.V.,
“Roll waves on flowing cornstarch suspensions,” Phys.
Letters A Vol. 17, pp. 479–484 (2005).
12.Yih, C. S., “Instability due to Viscosity
Stratification,” J. Fluid Mech. Vol. 27, pp. 337-352
(1967).
13.Yiantsios, S. G. and Higgins, B. G., “Linear Stability
of Plane Poiseuille Flow of Two Superposed Fluids,”
Phys. Fluids Vol. 31, pp. 3225-3238 (1988).
14.Hooper, A. P., “The Stability of Two Superposed Viscous
Fluids in a Channel,” Phys. Fluids Vol. 1, pp. 1133-
1142 (1989).
15.Hooper, A. P. and Boyd, W. G. C., “Shear-flow
Instability due to a Wall and a Viscosity Discontinuity
at the Interface,” J. Fluid Mech. Vol. 179, pp. 201-225
(1987).
16.Hinch, E. J., “A Note on the Mechanism of the
Instability at the Interface between Two Shearing
Fluids,” J. Fluid Mech. Vol. 144, pp. 463-465 (1984).
17.Smith, M. K., “The Mechanism for the Long-wave
Instability in the Liquid Films,” J. Fluid Mech. Vol.
217, pp. 469-485 (1990).
18.Hu, H. H. and Joseph, D. D., “Lubricated Pipelining:
Stability of Core-Annular Flow. Part 2,” J. Fluid Mech.
Vol. 205, pp. 359-396 (1989).
19.Su, Y. Y., “The Study of Stability Mechanism for Multi-
Layer Fluids Flowing onto an lnclined Plane,” J. Chem.
Eng. of Japan Vol. 34, No.4, pp. 531-539 (2001).
20.Renardy, Y., “Instability at the Interface between Two
Shearing Fluids in a Channel,” Phys. Fluids Vol. 28,
pp. 3441-3443 (1985).
21.Renardy Y., “The Thin-layer Effect and Interfacial
Stability in a Two-layer Couette Flow with Similar
Liquids,” Phys. Fluids Vol. 30, No. 6, pp. 1627-1637
(1987).
22.Hooper, A. P., “Long-wave Instability at the Interface
between Two Viscous Fluids:Thin Layer Effects,” Phys.
Fluids, Vol. 28, (1985), pp. 1613-1618.
23.Su, Y. Y., “Stability Analysis of Multiple Interfaces
in the Channel Die Flow,” J. Chinese Institute Chem.
Eng. Vol. 28, pp. 261-269 (1997).
24.Su, Y. Y. and Khomami, B., “Interfacial Stability of
Multilayer Viscoelastic Fluid in Slit,” J. Rheol. Vol.
36, pp. 357 (1992).
25.Renardy, Y., “Stability of the Interface in Two-layer
Couette Flow of upper Convected Maxwell liquids,” J.
Non-Newton. Fluid Mech. Vol. 28, pp. 99-115 (1988).
26.Hooper, A. P. and Boyd, W. G. C., “Shear-flow
Instability at the Interface between Two Viscous
Fluids,” J. Fluid Mech. Vol. 128, pp. 507-528 (1983).
27.Lin and Hanratty, 1986. P.Y. Lin and T.J. Hanratty,
Prediction of the initiation of slugs with linear
stability theory. Int. J. Multiphase Flow Vol. 12 pp.
79–98 (1986).
28.Crowley et al., 1992. C.J. Crowley, G.B. Wallis and J.J.
Barry, Validation of a one-dimensional wave model for
the stratified to slug flow regime transition, with
consequences for wave growth and slug frequency. Int. J.
Multiphase Flow Vol. 18 pp. 249–271 (1992).
29.Kao, T. W. and Park, C., “Experimental Investigations
of the Stability of the Channel Flows. Part 1. Flow of a
Single Liquid in a Rectangular Channel,” J. Fluid Mech.
Vol. 43, pp. 145-164 (1970).
30.Karnitz, M. A., M. C. Potter and M. C. Smith, J. Fluids
Eng. Vol. 96, pp. 384 (1974).
31.Nishioka, M., Iida, S. and Ichikawa, Y., “An
Experimental Investigation of the Stability of Plane
Poiseuille Flow,” J. Fluid Mech. Vol. 72, pp. 731-751
(1975).
32.Hooper, A. P. and Grimshaw, R., “Nonlinear Instability
at the Interface between Two Viscous Fluids,” Phys.
Fluids Vol. 28, pp. 37-45 (1985).
33.King, M. R. and McCready, M. J., “Weakly Nonlinear
Simulation of Planar Stratified Flows,” Phys. Fluids
Vol. 12, pp. 92-102 (2000).
34.Charru, F. and Fabre, J., “Long Waves at the Interface
between Two Viscous Fluids,” Phys. Fluids Vol. 6, pp.
1223-1235 (1994).
35.Khomami B. and Su K. C., “An Experimental / Theoretical
Investigation of Interfacial Instabilities in Superposed
Pressure-driven Channel Flow of Newtonian and Well
Characterized Viscoelastic Fluids Part Ⅰ:Linear
Stability and Encapsulation Effect,” J. Non-Newton.
Fluid Mech. vol. 91, pp. 59-84 (2000).
36.Valette R., Laure P., Demay Y. and Agassant J. F.,
“Convective Linear Stability Analysis of Two-layer
Coextrusion Flow for Molten Polymers,” J. Non-Newto
Fluid Mech. vol. 121, pp. 41-53 (2004).
37.Shiang, A. H., Lin, J. C., Öztekin, A. and
Rockwell, D., “Viscoelastic Flow around
a Confined Circular Cylinder: measurements using High-
image-density Particle Image Velocimetry,” J. Non-
New. Fluid Mech. Vol.
73, (1997),pp. 29-49.
38.陳俊佑,方形溝槽中兩層流體界面穩定度實驗分析,碩士論文,
國立台北科技大學化學工程系碩士班,台北,2002。
39.陳信賓,兩層流體在共擠加工之流動動態分析,碩士論文,國立
台北科技大學化學工程系碩士班,台北,2003。
40.郭介元,液-液並行流動中非線性界面波及捲波之研究,碩士論
文,國立台北科技大學化學工程系碩士班,台北,2006
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top