|
[1] S.-M. Chen, M.-l. Liu. Electrocatalytic properties of NDGA and NDGA/FAD hybrid film modified electrodes for NADH/NAD+ redox reaction. Electrochim Acta 2006; 51(22):4744-4753 [2] S.-M. Chen, C.-J. Liao, Vasantha VS. Preparation and electrocatalytic properties of osmium oxide/hexacyanoruthenate films modified electrodes for catecholamines and sulfur oxoanions. J Electroanal Chem 2006; 589(1):15-23 [3] Wang Z, Xiao S, Chen Y. β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J Electroanal Chem 2006; 589(2):237-242 [4]Raj CR, Tokuda K, Ohsaka T. Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate. Bioelectrochem 2001; 53(2):183-191 [5]Vasantha VS, S.-M. Chen. Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J Electroanal Chem 2006; 592(1):77-87 [6]Andrieux CP, Haas O, SavGant JM. Catalysis of electrochemical reactions at redox-polymer-coated electrodes. Mediation of the iron(III)/iron(II) oxido-reduction by a polyvinylpyridine polymer containing coordinatively attached bisbipyridine chlororuthenium redox centers. J Am Chem Soc 1986; 108(26):8175-8182 [7]Yu A, Liang Z, Cho J, Caruso F. Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 2003; 3(9):1203-1207 [8]Hilliard LR, Zhao X, Tan W. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 2002; 470(1):51-56 [9]Zhang W, Wan F, Zhu W, Xu H, Ye X, Cheng R, Jin LT. Determination of glutathione and glutathione disulfide in hepatocytes by liquid chromatography with an electrode modified with functionalized carbon nanotubes. J Chromatography B 2005; 818(2):227-232 [10]Gong K, Dong Y, Xiong S, Chen Y, Mao L. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. Biosens Bioelectron 2004; 20(2):253-259 [11]Wu G, Chen YS, Xu BQ. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochem Comm 2005; 7(12):1237-1243 [12]He Z, Chen J, Liu D, Zhou H, Kuang Y. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond & Related Mat 2004; 13(10):1764-1770 [13]Li Q, Zhang J, Yan H, He M, Liu Z. Thionine-mediated chemistry of carbon nanotubes. Carbon 2004; 42(2):287-291 [14]Zhang J, Lee JK, Wu Y, Murray RW. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett 2003; 3(3):403-407 [15]Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 2001; 123(16):3838-3839 [16]Moraes CM, Abrami P, Paula ED, Braga AFA, Fraceto LF. Study of the interaction between S(-) bupivacaine and 2-hydroxypropyl-β-cyclodextrin. Inter J Pharmaceutics 2007; 331(1):99-106 [17]Xu Q, Wang SF. Electrocatalytic oxidation and direct determination of L-Tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim Acta 2005; 151(1-2):47-52 [18]Ferapontova EE. Electrochemistry of guanine and 8-oxoguanine at gold electrodes. Electrochim Acta 2004; 49(11):1751-1759 [19]Tacconi NRD, Rajeshwar K, Lezna RO. Metal hexacyanoferrates electrosynthesis, in situ characterization, and applications. Chem Mater 2003; 15(16):3046-3062 [20]Humphrey BD, Sinha S, Bocarsly AB. Mechanisms of charge transfer at the chemically derivatized interface the Ni/[NiII(CN)FeII/III(CN)5]2-/1- system as an electrocatalyst. J Phys Chem 1987; 91(3):586-593 [21]Dryhurst G. Electrochemical determination of adenine and adenosine Adsorption of adenine and adenosine at the pyrolytic graphite electrode. Talanta 1972; 19(6):769-778 [22]Ozsoza MT, Erdema A, Zkana DO, Karaa P, Karadeniza H, Merica B, Kermana K, Girousib S. Allele-specific genotyping by using guanine and gold electrochemical oxidation signals. Bioelectrochem 2005; 67(2):199-203 [23]Lim SH, Wei J, Lin J. Electrochemical genosensing properties of gold nanoparticle-carbon nanotube hybrid. Chem Phy Lett 2004; 400(4-6):578-582 [24]Ferapontov EE. Electrochemistry of guanine and 8-oxoguanine at gold electrodes. Electrochim Acta 2004; 49(11):1751-1759 [25]Kerman K, Morita Y, Takamura Y, Tamiya E. Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochem Comm 2003; 5(10):887-891 [26]Choa KH, Choob J, Jooc SW. Tautomerism of thymine on gold and silver nanoparticle surfaces surface-enhanced Raman scattering and density functional theory calculation study. J Mol Struct 2005; 738(1-3):9-14 [27]Yamashita K, Takagi M, Uchida K, Kondo H, Takenaka S. Visualization of DNA microarrays by scanning electrochemical microscopy (SECM). Analyst 2001; 126(8):1210-1211 [28]Yogeswaran U, Thiagarajan S, Chen SM. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal Biochem 2007; 365(1):122-131 [29]Wang J, Song F, Zhou F. Silver-enhanced imaging of DNA hybridization at DNA microarrays with scanning electrochemical microscopy. Langmuir 2002; 18(17):6653-6658 [30]Yan Y, Zhang M, Gong K, Su L, Guo Z, Mao L. Adsorption of methylene blue dye onto carbon nanotubes a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem Mater 2005; 17(13):3457-3463 [31]Li Y, Shi G. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J Phys Chem B 2005; 109(50):23787-23793 [32]Gopalan AI, Lee KP, Manesh KM, Santhosh P, Kim JH. Gold nanoparticles dispersed into poly(aminothiophenol) as a novel electrocatalyst—Fabrication of modified electrode and evaluation of electrocatalytic activities for dioxygen reduction. J Mol Catalysis A Chem 2006; 256(1-2):335-345 [33]Somorjai GA. An introduction to surface chemistry and catalysis. New York: Wiley-Interscience. 1994: 461 [34]Hernandez J, Solla-Gullon J, Herrero E. Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. J Electroanal Chem 2004; 574(1):185-196 [35]Vasantha VS, Phani KLN. Effect of hydroxypropyl-β-cyclodextrin on the electrochemical oxidation and polymerization of 3,4-ethylenedioxythiophene. J Electroanal Chem 2002; 520(1-2):79-88 [36]Fini P, Loseto R, Catucci L, Cosma P, Agostiano A. Study on the aggregation and electrochemical properties of Rose Bengal in aqueous solution of cyclodextrins. Bioelectrochem 2007; 70(1):44-49 [37]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 1979; 101(1):19-28 [38]Verdejo B, Aguilar J, Espan˜a EG. CO2 Fixation by Cu2+ and Zn2+ Complexes of a Terpyridinophane Aza Receptor. Crystal Structures of Cu2+ Complexes, pH-Metric, Spectroscopic, and Electrochemical Studies. Inorg Chem 2006; 45(9):3803-3815 [39]Brown TF, Brown SD. Resolution of overlapped electrochemical peaks with the use of the Kalman filter. Anal Chem 1981; 53(9):1410-1417 [40]J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, Solution properties of single-walled carbon nanotubes, Science 282 (1998) 95-98. [41]J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, R.E. Smalley, R.C. Haddon, Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 105(2001) 2525-2528. [42]J.Clark, C.Lyons, Annals of the New York Academy of Sciences, 102 (1962) 29 [43]B.Danielsson, K. Mosbach, Oxford University Press:New York.,1989. [44]A.Sternesjo, Anal. Chem.,226(1995) 175. [45]M. A. Glimartin, J. P.Hart, Analyst, 120 (1995) 1029. [46]P. Saber, W. Lund, Talanta, 29 (1982) 457. [47]J. Wang, D. L. Hutchins-Kumar, Anal. Chem., 58 (1986) 402. [48]R. P. Baldwin, Thomsen, K. N. Talanta, 38 (1991) 1. [49]R. W. Murray, A. G.. Ewing, R. A. Durst, Anal. Chem., 59 (1987) 379. [50]W. M. Damien, Analyst, 119 (1994) 1953. [51]R. W. Murry, Acc. Chem. Res. 13 (1980) 135. [52]T.Yildirim, et al. 62 (2000) 19 [53]M. S. Dresselhaus, J. Mater. Res. 13 (1998) 2355. [54]C. Heitner-Wirguin, Journal of Membrane Science, 120 (1996) 1. [55]K. A. Mauritz, R. B. Moore, Chemical Reviews, 104 (2004) 4535. [56]Church, Steven. 6 (2006)
|