跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王中敬
研究生(外文):Jung-Jing Wang
論文名稱:使用獨立成份分析法和減法聚類分類法分析老鼠主運動區的ENG訊號
論文名稱(外文):Analysis of ENG Signal from Primary Motor Cortex of Rats Using ICA and Subtractive Clustering
指導教授:駱榮欽駱榮欽引用關係
口試委員:顏炳郎蔣永孝
口試日期:2008-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:94
中文關鍵詞:腦神經電圖獨立成份分析類比/數位減法聚類分類法
外文關鍵詞:Electroneurography (ENG)Independent Component Analysis (ICA)Multi-Electrode ArraySubtractive Cluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
本論文裡我們使用獨立成份分析法(ICA)和減法聚類分類能夠有效率的分析老鼠的腦皮質層電生理訊號(ENG,腦神經電圖)。系統中我們發展一套完整的系統能夠紀錄八通道的腦神經電圖,此八通道微電極陣列被植入實驗中老鼠大腦皮質層內的主運動區,訊號經由前級放大電路與後級帶通濾波放大電路來放大,並透過A/D 卡把腦電生理訊號存取到電腦。當紀錄的同時,系統同步攝影監控紀錄老鼠的動作。紀錄腦神經訊號之後,我們使用ICA方法分析最可能獨立的原始腦電生理訊號成份。但是所得到的獨立原始訊號成份會有幾個問題存在,其獨立原訊號成份的排序、比重和大小都不能被確定,因此我們發展了源訊號關聯匹配法來解決此問題,並且使用減法聚類分類法來分類老鼠的腦神經電訊號。從實驗結果中已我們能夠有意義的分辯出老鼠做動作時與腦波訊號之間的關係。
In the study, we propose an effective method using ICA and subtractive clustering to analyze (Electroneurography) ENG signal of the rat. We have completed the system which can record 8-channel ENG signal. Using the 8-channel multi-electrode array and then implant it into the primary motor cortex of rats. The signal is amplified through front-stage amplitude circuit and after-stage amplitude band-pass filter circuit. And, we record the ENG signal into PC through A/D card. When recording the ENG signal, we also synchronously monitor the activity images of rats at the same time. After recording we employ to ICA method, we get independent sources as possible as we can. But the independent sources still have some problems. It is difficult to determine the order, weight, and the scaling of independent sources. We develop a matching source method to solve this problem, and we used the subtractive clustering which can classify the ENG signal of rats. The result we can meaningfully distinguish relation between the ENG signal and the activity of rats.
摘 要 i
ABSTRACT ii
誌謝 iv
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES ix
Chapter 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Objects of research 1
1.3 Survey 2
1.3.1 Survey of experimental-design 2
1.3.2 Survey kinds of Brain Signal 3
1.3.3 Survey of capture circuit system 5
1.4 Overview of the proposed methods 5
1.5 Organization of thesis 5
Chapter 2 INDEPENDENT COMPONENT ANALYSIS 7
2.1 Blind source separation 8
2.1.1 Observing mixtures of unknown signals 8
2.1.2 Source separation based on independence 11
2.2 Independent component analysis 12
2.2.1 Definitions of linear independent component analysis 12
2.2.2 Restrictions in ICA 14
2.2.3 Preprocessing for ICA 15
2.2.3.1 Centering 15
2.2.3.2Whitening 16
2.2.4 Objective functions and algorithms 17
2.2.5 Measure of non-gaussuanity 18
2.2.5.1 Kurtosis and its properties 18
2.2.5.2 Negentropy 20
2.2.5.3 FastICA 22
Chapter 3 INDEPENDENT SOURCE SIGNAL RELATION MATCHING ALGORITHM 23
3.1 Reviewing Problem of ICA 23
3.2 Using ICA on Experiment system 24
3.3 Independent Source Signal Relation Matching Algorithm 26
3.4 Classification Nth Action Relation by Using Subtractive Clustering 31
Chapter 4 SYSTEM ARCHITECTURE 39
4.1 System Overview 39
4.2 Cortex Signal Capture System 41
4.2.1 Capture Circuits 41
4.2.1.1 DC Power Supply Circuit 41
4.2.1.2 Front-Stage Amplifier Circuit 42
4.2.1.3 Afterward- Stage Amplifier Circuit 44
4.2.1.4 Capture circuits testing and verifying 45
4.2.2 Signals digitization 46
4.2.3 Synchronous image monitor 48
Chapter 5 EXPERIMENTAL METHODS 50
5.1 Microelectrode Design and Implementation 50
5.2 The Operation Methods 52
5.2.1 The Brain of Rat 52
5.3 Rat Carrying Front-Stage Amplifier Circuit method 57
Chapter 6 EXPERIMENTS RESULT 58
6.1 The rat’s action 58
6.2 The experimental results of the action after Butterworth filter and FFT 59
6.3 The experimental results and statistical analysis 63
6.3.1 Analysis steps 63
6.3.2 The cluster result of three actions of rat-1 64
6.3.3 The cluster result of three actions of rat-2 and rat-3 65
6.4 Discussion 67
Chapter 7 CONCLUSIONS AND FUTURE WORK 68
7.1 Conclusions 68
7.2 Future work 68
REFERENCE 69
APPENDIX 71
Appendix A.1 Experiment data result of rat-1 72
作者簡介 94
[1] 李志昌,大鼠尾部感覺訊息的中樞傳遞路徑與在側視丘路徑中的處理,博士,國立台灣大學動物系研究所,台北,90。
[2] O. Fukayama, Y. Morishita, T. Suzuki, and K. Mabuchi, “Estimation of Walking Speed for Controlling Vechicle Using Neural Signal from Primary Motor Cortex of Rat,” Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia • March 16 - 19, 2005.
[3] W. Jensen1 and P. J. Rousche2, “Encoding of Self-Paced, Repetitive Forelimb Movements in Rat Primary Motor Cortex,” Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA • September 1-5, 2004.
[4] Winnie Jensen1 and Patrick. J. Rousche2, “Movement Discrimination Based On Rat Primary Motor Cortex Responses,” Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia March 16 - 19, 2005.
[5] Fabienne Por´ee, Amar Kachenoura, Herv´e Gauvrit, Catherine Morvan, Guy Carrault,and Lotfi Senhadji, “Blind Source Separation for Ambulatory Sleep Recording,” IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 10, NO. 2, APRIL 2006.
[6] LA. Geddes and C. Hodge, “The Retrospectroscope,” IEEE ENGINEERING IN MEDICINE AND BIOLOGY, January/February 1996 P101-P103.
[7] M.S. Lewicki, “A review of methods for spike sorting: the detection and classification of neural action potentials,” Network: Comput. Neural Syst. 9 (1998) R53–R78.
[8] 黃一軒,大腦功能性磁振影像與誘發電位同步量測系統之建立,碩士,國立臺灣大學電機工程學研究所,台北,91。
[9] 林孟儀、林壽樺、洪國耀,腦波生物醫學訊號分析系統—應用在老鼠腦皮質層 訊號擷取與分析,大學,國立台北科技大學電子工程學研究所,台北,91。
[10] 藍志仁,利用獨立成份分析判讀老鼠主要運動區訊號,碩士,國立台北科技大學電腦通訊研究所,台北,95。
[11] A. Hyv¨arinen and E. Oja, “Fast fixed-point algorithm for independent component analysis,” Neural Comput. vol. 9, pp. 1483–1492, 1997.
[12] A. Hyv¨arinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 626–634, Mar. 1999.
[13] A. Hyvarinen, E. Oja, “Independent Component Analysis: Algorithms and Applications”, Neural Networks, 13(4-5):411-430, 2000.
[14] 李諺冺,修改K-means演算法應用在距離矩陣為基礎的分類,碩士,私立中原大學資訊工程學系,桃園,91。
[15] J.R. JANG, C.T. SUN and E.MIZUTANI, Neuro-Fuzzy and soft Computing. Prentice Hall, 1997.
[16] 張智星,Matlab程式設計與應用,台北: 清蔚科技出版,民94。
[17] 余耀銘,蔡文亮,林聖凱,駱榮欽,「應用於腦波訊號量測之生醫訊號擷取系統」,2004 生物醫學工程科技研討會。
[18] 蕭子健、王智昱、儲昭偉,虛擬儀控程式設計LabVIEW7X,台北: 高力圖書,民93。
[19] 林聖凱,活動中正常老鼠的腦皮質層訊號與活動行為之關性的研究,碩士,國立台北科技大學機電整合研究所,台北,92。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top