跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝文碩
研究生(外文):Wen-Shuo Hsieh
論文名稱:高溫型固態氧化物燃料電池之製程與特性研究
論文名稱(外文):Fabrication and Characterization of High Temperature Solid Oxide Fuel Cells
指導教授:徐永富徐永富引用關係王錫福
指導教授(外文):Yung-Fu HsuSea-Fue Wang
口試委員:邱善得林鵬吳玉娟
口試委員(外文):Shan-De ChiouPang LinYu-Chuan Wu
口試日期:2008-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:燃料電池陽極支撐型釔穩定氧化鋯
外文關鍵詞:Fuel CellAnode SupportedYttria-Stabilized Zirconia
相關次數:
  • 被引用被引用:3
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
為了增進高溫型固態氧化物燃料電池發電效率及降低操作溫度,本實驗使用一般常見的高溫型材料,電解質為8YSZ;陽極為NiO-9YSZ;陰極為20LSM-8YSZ,先研製多孔性NiO-9YSZ陽極基材再以網印法網印上8YSZ電解質層薄膜而後進行燒結,接續再網印上20LSM-YSZ陰極層後經燒結完成單元電池製作。利用不同網印次數來改變電解質與陰極的膜厚,並藉由不同之燒結溫度來獲得緻密的電解質層與多孔的陰極層。最後將製備完成的單元電池置於固態氧化物燃料電池量測平台上,利用金環作為封裝材料,來了解不同製程下各單元電池的特性,並利用場發式電子顯微鏡來觀察單元電池的微結構。研究發現於1400oC燒結的陽極基材與電解質層於1450oC燒製時斷面最為緻密,但表面仍有些許孔洞。於1350oC燒結的陽極基材與電解質層於1450oC燒製,發現電解質層表面孔洞明顯減少,增加了網印法下電解質的緻密性。陰極層與陽極基材的微結構皆為多孔狀。
In order to enhance high-temperature solid oxide fuel cell power generation efficiency and lower operating temperature. The experimental was used of general type of high-temperature materials. The composition of electrolyte, anode and cathode is 8YSZ, NiO-9YSZ and 20LSM-8YSZ respectively. First of all, the experimental manufactured porous anode substrate (NiO-9YSZ). Then, printed 8YSZ electrolyte layer on anode substrate for screen printing and sintering. Finally, printed 20LSM-8YSZ cathode layer on electrolyte and sintering. Printing used of different number of times to change the electrolyte and cathode thickness, and by different sintering temperature to achieve dense electrolyte layer and porous cathode layer. The full cell was located in solid oxide fuel cell measurement platform and sealed with golden circle. To understand the characteristics of cells with different processes, and observed microstructure of cells with FE-SEM. In our study, anode and electrolyte were sintered under 1400oC and 1450oC respectively to find that cross-section of electrolyte is densification, but there were still some pores on surface of electrolyte. Anode and electrolyte were sintered under 1350oC and 1450oC respectively to find that surface pores of electrolyte were reduced and increase densification of electrolyte for screen printing. Microstructure of anode and cathode layer had many micro-pores.
摘要i
ABSTRACTii
誌謝iv
目錄v
表目錄vii
圖目錄viii
第一章緒論1
1.1前言1
1.2研究動機3
1.3研究目的4
第二章文獻回顧及理論背景5
2.1燃料電池的歷史與發展5
2.2固態氧化物燃料電池之基本原理6
2.3固態氧化物燃料電池的設計 9
2.3.1圓筒型SOFC9
2.3.2岩板型SOFC10
2.3.3平板型SOFC10
2.4固態氧化物燃料電池之組成要素與材料12
2.4.1三相界面12
2.4.2電解質14
2.4.3陽極 19
2.4.4陰極 21
第三章實驗方法23
3.1實驗儀器與設備23
3.1.1X光繞射儀23
3.1.2場發射掃描式電子顯微鏡 23
3.1.3體密度量測23
3.1.4比表面積分析儀24
3.1.5雷射粒徑分析儀24
3.1.6真密度儀25
3.1.7熱差與熱重分析儀25
3.1.8熱膨脹分析儀25
3.1.9網印機25
3.2實驗材料與耗材27
3.3實驗流程28
3.3.1電解質與電極材料之燒結特性與熱膨脹試驗28
3.3.2陽極基材製作30
3.3.3全電池製作32
3.3.4全電池製作特性分析34
第四章結果與討論37
4.1初始粉體特性37
4.2初始粉體XRD分析 42
4.3粉體燒結特性與熱膨脹分析 44
4.4陽極基材分析與製作48
4.5全電池製作與分析55
第五章結論65
參考文獻66
附錄69
[1].K. O. Ott, “Global warming and the greenhouse effect,” Progress in Nuclear Energy, 29 (1995) 81.
[2].A. B. Stamboul, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews 6 (2002) 433–455.
[3].Movie “An Inconvenient Truth”(2006)
[4].C. Song, “Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century,” Catalysis Today 77 (2002) 17–49.
[5].W. Bao, “Effect of NiOYSZ compositions on the co-sintering process of anode-supported fuel cell,” Journal of Membrane Science 259 (2005) 103–109.
[6].J. Will, “Fabrication of thin electrolytes for second-generation solid oxide fuel cells,” Solid State Ionics 131 (2000) 79–96.
[7].黃鎮江, “燃料電池修訂版,”台北, 全華科技圖書, 2005[民94]
[8].衣寶廉, “燃料電池:原理.技術.應用.,”北京:化學工業, 2003[民92]
[9].W.Z. Zhu, “A review on the status of anode materials for solid oxide fuel cells,” Materials Science and Engineering A362 (2003) 228–239.
[10].S. M. Haile, “Fuel cell materials and components,” Acta Materialia 51 (2003) 5981–6000.
[11].N. Q. Minh, “Solid oxide fuel cell technology - features and applications,” Solid State Ionics 174 (2004) 271–277.
[12].S. C. Singhal, “Advances in solid oxide fuel cell technology,” Solid State Ionics 135 (2000) 305–313.
[13].D. Stover, “Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC),” Ceramics International 30 (2004) 1107-1113.
[14].D. H. Jeon, “Microstructural Optimization of Anode-Supported Solid Oxide Fuel Cells by a Comprehensive Microscale Mode,” Journal of the Electrochemical Society, 153(2) A406-A417 (2006).
[15].H. X. You, “Electrical performance of SOFC with anode of YSZ coating NiO,” Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology 47 (4), (2007) 497-500.
[16].S. P. Yoon, “Improvement of anode performance by surface modification
for solid oxide fuel cell running on hydrocarbon fuel,” Journal of Power Sources 136 (2004) 30–36.
[17].H. Inaba, “Ceria-based solid electrolytes,” Solid State Ionics 83 (1996) 1-16.
[18].Y. Zhang, “Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs,” Solid State Ionics 177 (2006) 281–287.
[19].D. Montinaro, “Tape casting fabrication and co-sintering of solid oxide “half cells” with a cathode–electrolyte porous interface,” Solid State Ionics 177 (2006) 2093–2097.
[20].K. Chen, “Fabrication and performance of anode-supported YSZ films by slurry spin coating,” Solid State Ionics 177 (2007) 3455–3460.
[21].L. Jia, “Preparation of YSZ film by EPD and its application in SOFCs, ”Journal of Alloys and Compounds 424 (2006) 299–303.
[22].N. Jiang, “A higher conductivity Bi2O3-based electrolyte, ” Solid State Ionics 150 (2002) 347–353.
[23].I. T. Ellen, “Materials and technologies for SOFC-components, ” Journal of the European Ceramic Society 21 (2001) 1805–1811.
[24].S. H. Hyun, “Preparation of YSZ YDC and YSZ GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC, ” Journal of Materials Science 37 (2002) 2535–2541.
[25].X. Zhang, “NiO–YSZ cermets supported low temperature solid oxide fuel cells, ” Journal of Power Sources 161 (2006) 301–307.
[26].H. G. Scott, “Phase relationships in the zirconia-yttria system, ” Journal of Materials Science 10 (1975) 1527-1535.
[27].T. Matsushima, “Effects of sinterability of YSZ powder and NiO content on characteristics of Ni-YSZ cermets, ” Solid State Ionics 111 (1998) 315–321.
[28].D. W. Dees, “Conductivity of Porous Ni ZrO2-Y2O3 Cermets, ” ELECTROCHEMICAL STORAGE79 (1987) 134-9.
[29].W. D. Kingery, “Introduction to ceramics,” New York: John Wiley & Sons, (1976) 913-974.
[30].J. M. Ralph, “Materials for lower temperature SOFC, ” Journal of Materials Science 36 (2001) 1161 – 1172.
[31].J. S. Reed, “Principles of Ceramics Processing, ” New York, Wiley Inter. Science, 2nd.
[32].閻景旺, 程漠杰, 衣寶廉, “固態氧化物燃料電池材料的研究與發展,”北京, 2002, pp.188-190.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top