[1]W.C.Lin, T.S.Kao, H.H.Chang, Y.H.Lin, Y.H.Fu, C.T.Wu, K.H.Chen and D.P.Tsai, “Study of a Super-Resolution Optical Structure: Polycarbonate/ ZnS-SiO2/ ZnO/ ZnS–SiO2/ Ge2Sb2Te5/ ZnS-SiO2,“ Jpn. J. Appl. Phys., vol.42, no. 2B, 2003, pp. 1029-1030.
[2]曾淑華,「CD-R光碟片仍是記錄型光碟片市場主流」, 工業材料,172期,2001,pp. 115-119。[3]姜暭先,「DVD-R光碟技術發展」,工業材料,148期,1999,pp. 82-87。
[4]曾美榕, 「可複寫DVD光碟發展現況」,工業材料,157期,2000,pp. 113-117。[5]曾美榕, 「DVD相變型光碟片發展現況」,工業材料,148期,1999, pp. 72-81。[6]王東釧,王威翔, 「光碟之規格與結構」, 工業材料,150期,1999, pp. 139-149。[7]王東釧,王威翔, 「相變化光碟材料系統簡介 (上)」,工業材料,143期,1998, pp. 154-159。[8]王東釧,王威翔, 「相變化光碟材料系統簡介 (下)」, 工業材料,144期,1998, pp. 121-124。[9]J. M. Blackmore and A. G. Culls, “The Structure of ZnS Thin Films Deposited by R.F. Sputtering,” Thin Solid Films, vol. 199, 1991, pp. 321-334.
[10]M. Oikkonen, M. Blomberg and T. Tuomi, “X-Ray Diffraction Study of Microstructure in ZnS Thin Films Grown from Zinc Acetate by Atomic Layer Epitaxy,” Thin Solid Films, vol. 124, 1985, pp. 317-321.
[11]E. K. Kim and S. I. Kwun, “Thermal Boundary Resistance at Ge2Sb2Te5/ZnS:SiO2 Interface,” Appl. Phys. Lett., vol. 76, no. 26, 2000, pp. 3864-3866.
[12]E. K. Kim and S. I. Kwun, “Heat Conduction in ZnS:SiO2 Composite Films,” Phys. Rev. B, vol. 61, no. 9, 2000, pp. 6036-6040.
[13]A. Goswami and A. P. Goswami, “Dielectric and Optical Properties of ZnS Films,” Thin Solid Films, vol. 16, 1973, pp.175-185.
[14]S. O. Nelson, “Density-Permittivity Relationships for Powdered and Granular Materials,” IEEE Trans. Instrum. Meas., vol. 54, no. 5, 2005, pp.2033-2040.
[15]S. O. Nelson, “Permittivity and Density Relationships for Granular and Powdered Materials,” IEEE Antennas and Propagation Society, AP-S Int. Symp. Dig., no. 1 , 2004, pp.229-232,.
[16]S. Trabelsi, A. W. Kraszewsky, and S.O.Nelson, IEEE Instrumentation and Measurement Technology Conference, Budapest, 2001, pp.1887-1892.
[17]A.C.Caballero Jr., F.FernBndez, C.Moure, and P.Duriin, “ZnO-Doped BaTi03: Microstructure and Electrical Properties,” J. Europ. Ceram. Soc., vol. 17, no. 5, 1997, pp.513-523,.
[18]S. Solomon, J. T. Joseph, H. P. Kumar and J. K. Thomas, “Effect of ZnO Doping on the Microwave Dielectric Properties of LnTiNbO6 (Ln=Sm or Dy) Ceramics,” Mater. Lett., vol. 60, 2006, pp.2814-2818.
[19]Y. B. Chen, C. L. Huang, and S. H. Lin, “Influence of ZnO Additions to 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 Ceramics on Sintering Behavior and Microwave Dielectric Properties,” Mater. Lett., vol. 60, 2006, pp.3591-3595.
[20]L. M. Levinson and H. R. Philipp, “The Physics of Metal Oxide Varistors,” J. Appl. Phys., vol. 46, no. 3, 1975, pp. 1332-1341.
[21]K. Eda, A. Iga and M. Matuoka, “Degradation Mechanism of non-Ohmic Zinc Oxide Ceramics,” J. Appl. Phys., vol. 51, no. 5, 1980, pp. 2678-2684.
[22]謝榮淵,「濺鍍靶材之製造方法介紹」, 技術與訓練,第27卷,第4期,2002,pp. 135-145。[23]陳皇鈞譯,陶瓷材料概論,台北:曉園出版社,1988,pp. 475-477.
[24]黃坤祥,粉末冶金學,新竹:粉末冶金協會,2003,pp. 234-239.
[25]汪建民,陶瓷技術手冊,新竹:粉末冶金協會,1999,pp. 119-126.
[26]邱碧秀,電子陶瓷材料,台北:徐氏基金會,1994,pp. 81-159.
[27]K. Sangwal, Etching of Crystals- Theory, Experiment and Application, North-Holland: Amsterdam, 1987, pp. 100-101.
[28]T. Hirokawa, K. Honda and T. Shibuya, “Formation of Etch Hillocks in White Tin,” J. Cryst. Growth, vol. 24, 1974, pp. 484-487.
[29]H. L. Stadler, “Etched Hillocks in BaTiO3,” J. Appl. Phys., vol. 34, 1963, pp. 570-573.
[30]B. W. Batterman, “Hillocks, Pits, and Etch Rate in Germanium Crystals,” J. Appl. Phys., vol. 28, 1957, pp. 1236-1241.
[31]J. Weyher and W. J. P. Van Enckevort, “Selective Etching and Photoeyching of {l00} Gallium Arsenide in CrO3-HF Aqueous Solutions. II. The Nature of Etch Hillocks,” J. Cryst. Growth, vol. 63, 1983, pp. 292-298.
[32]C. G. de Andres, F. G. Caballero, C. Capdevila and D. S. Martin, “Revealimg Austenite Grain Boundaries by Thermal Etching : Advantages and Disadvantages,” Materials Characterization, vol. 49, 2003, pp. 121-127.
[33]C. C. Chang and Pouyan Shen, “Thermal-eting Development of α-Zn2SiO4 Polycrystals: Effects of Lattice Imperfections, Mn-dopant and Capillary Force,” Mater. Sci. Eng. A, vol.288, 2000, pp. 42-46.
[34]C. Aksel, P. D. Warren, “Thermal Shock Pararmeters [R, R’’’ and R’’’’] of Magnesia-Spinel Composite,” J. Eur. Ceram. Soc. vol.23, 2003, pp. 301-308.
[35]Z. Zhou, P. Ding, S. Tan and J. Lan, “A New Thermal-shock-resistance Model for Ceramics: Establishment and validation,” Mater. Sci. Eng., vol.405, 2005, pp. 272-276.
[36]D. P. H. Hasselman, “ Thermal Stress Resistance Parameters for Brittle Refractory Ceramics: A Compendium,” Ceram. Bull., vol. 49, no. 12, 1970, pp. 1033-1037
[37]D. P. H. Hasselman, “Theory of Thermal Shock Resistance of Semitransparent Ceramics Under Radiation Heating,” J. Am. Ceram. Soc., vol.49, no. 2, 1965, pp. 103-104.
[38]D. P. H. Hasselman, “Thermal Shock by Radiation Heating,” J. Am. Ceram. Soc. vol.46, no. 5, 1963, pp. 229-234.
[39]D. P. H. Hasselman, “Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics,” J. Am. Ceram. Soc., vol.52, no. 11, 1969, pp. 600-604.
[40]G. S. Brady, H. R. Clauster and J. A. Vaccari, Materials Handbook, New York: McGraw-Hill, 2002, 14th ed., pp. 990-994.
[41]F. Cardarelli, Materials Handbook, London: Springer, 2000, pp. 466-468.
[42]ASTM, “Standard Test Method for Determination of Thermal Shock Resistance for Advanced Ceramics by Water quenching,” Designation: C1525-04.
[43]P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method,” J. Am. Ceram. Soc., vol.64, no. 9, 1981, pp. 539-543.
[44]G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurement,” J. Am. Ceram. Soc., vol.64, no. 9, 1981, pp. 533-538.
[45]Z. Li, A. Ghosh, A. S. Kobayashi and R. C. bradt, “Indentation Fracture Toughness of Sintered Silicon Carbide in the Palmqvist Crack Regime,” J. Am. Ceram. Soc., vol.72, no. 6, 1989, pp. 904-911.
[46]K. Nihara, A. Nakahira and T. Hirai, “The Effect of Stoichiometry on Mechanical Properties of Boron Carbide,” J. Am. Ceram. Soc., vol. 67, no. 1, 1984, C-13-C-14.
[47]E. N. Bunting, “Phase Equilibrium in the System SiO2-ZnO,” J. Am. Ceram. Soc. vol.13, no.1, 1930, pp. 5-10.
[48]T. W. Dakin, “Conduction and Polarization Mechanisms and Trends in Dielectrics,” IEEE Electrical Insulation Magazine, vol.22, no. 5, 2006, pp. 11-28.
[49]A. K. Jonscher, “Dielectric Relaxation in Solids,” J. Phys. D: Appl. Phys., vol. 32, 1999, pp. R57-R70.
[50]M. S. Dash, J. Bera and S. Ghosh, “Effect of Porosity on Electrical Properties of Undoped and Lanthanum Doped BaTi0.6Zr0.4O3,” International Conference on Solid Dielectrics, Winchester, UK, 2007, pp. 8-13.
[51]B. P. Kumar, H. H. Kumar and D. K. Kharat, “Effect of Porosity on Dielectric Properties and Microstructure of Porous PZT Ceramics,” Mater. Sci. Eng. B, vol.127, 2006, pp. 130-133.
[52]F. Ragot, J. C. Badot, N. Baffier and A. Fourier-Lamer, “Influence of the Microstructure on Dielectric and Conducting Properties of Vanadium Pentoxide,” J. Mater. Chem., vol. 5, no. 8, 1995, pp. 1155-1161.
[53]C. G. Koops, “On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies,” Phys. Rev., vol. 83, no. 1, 1951, pp. 121-124.
[54]M. George, S. S. Nair, A. M. John, P. A. Joy and M. R. Anatharaman, “Finite Size Effects on the Electrical Properties of Sol-gel Synthesized CoFe2O4 Powders: Deviation from Maxwell-Wagner Theory and Evidence of Surface Polarization Effects,” J. Phys. D: Appl. Phys., vol. 40, 2007, pp. 1593-1602.
[55]M. George, S. S. Nair, A. M. John, P. A. Joy and M. R. Anatharaman, “Structural, Magnetic and Electrical Properties of the Sol-gel Prepared Li0.5Fe2.5O4 Fine Particles,” J. Phys. D: Appl. Phys., vol. 39, 2006, pp. 900-910.
[56]T. Asokan, “Grain Boundary Properties of Hot Pressed Zinc Oxide Varistors,” Mater. Res. Bull., vol. 28, 1993, pp. 1277-1284.
[57]W. G. Morris, “Physical Properties of the Electrical Barriers in Varistors”, J. Vac. Sci. Technol., vol. 13, no. 4, 1976, pp. 926-931.
[58]Y. Ohbuchi, T. Kawahara, Y. Okamoto, and J. Morimoto, “Distributions of Interface States and Bulk Traps in ZnO Varistors”, Jpn. J. Appl. Phys., vol. 40, no. 1, 2001, pp. 213-219.
[59]N. Saxena, B. K. Kuanr, Z. H. Zaidi and G. P. Srivastava, “Effect of Aluminium Substitution on Electric, Magnetic, and Microwave Properties of LiTi Ferrite,” Phys. Stat. Sol. (a), vol. 127, 1991, pp. 231-242.
[60]Q. Wang, O. Varghese, C. A. Grimes and E. C. Dickey, “Grain Boundary Blocking and Segregation Effects in Yittrium-doped Polycrystalline Titanium Dioxide,” Solid State Ionics, vol. 178, 2007, pp. 187-194.
[61]G. Zang, J. Zhang, P. Zheng, J. Wang and C. Wang, “Grain Boundary Effect on the Dielectric Properties of CaCu3Ti4O12 Ceramics”, J. Phys. D: Appl. Phys., vol. 38, no. 11, 2005, pp. 1824-1827.
[62]Y. Guo, H. Ohsato, and K. Kakimoto, “Characterization and Dielectric Behavior of Willemite and TiO2-doped Willemite Ceramics at Millimeter-microwave Frequency”, J. Europ. Ceram. Soc., vol. 26, 2006, pp. 1827-1830.
[63]H. Ohsato, “Microwave Materials with High Q and Low Dielectric Constant for Wireless Communications”, Mater. Res. Soc. Symp. Proc., vol. 833, 2005, pp. 55-62.
[64]J. Merikhi and C. Feldmann, “Adhesion of Colloidal SiO2 Particle on ZnS-Type Phosphor Surfaces”, J. Colloid and Interface Science, vol. 228, 2000, pp. 121-126.
[65]S. Ding, Y. P. Zeng and D. Jiang, “Thermal Shock Behavior of Mullite-bonded Porous Silicon Carbide Ceramics with Yttria Addition”, J. Phys. D: Appl. Phys., vol. 40, 2007, pp. 2138-2142.
[66]E. H. Lutz, M. V. Swain and N. Claussen, “Thermal Shock Behavior of Duplex Ceramics”, J. Am. Ceram. Soc., vol. 74, no. 1, 1991, pp. 19-24.
[67]M. Aldridge and J. A. Yeomans, “The Thermal Shock Behavior of Dutile Particle Toughed Alumina Composites”, J. Europ. Ceram. Soc., vol. 19, 1998, pp. 1769-1775.
[68]X. Q. You, T. Z. Si, N. Liu, P. P. Ren, Y. D. Xu and J. P. Feng, “Effect of Grain Size on Thermal Shock Resistance of Al2O3-TiC Ceramics”, Ceram. Int., vol. 31, 2005, 33-38.
[69]S. Ding, Y. P. Zeng and D. Jiang, “Thermal Shock Resistance of in situ Reaction Bonded Porous Silicon Carbide Ceramics”, Mater. Sci. Eng. A, vol. 425, 2006, pp. 326-329.
[70]G.. Rixeckera, K. Biswasa, A. Rosinusa, S. Sharmab, I. Wiedmanna and F. Aldingera, “Fracture Properties of SiC Ceramics with Oxynitride Additives”, J. Europ. Ceram. Soc., vol. 22, 2002, pp. 2669-2675.
[71]Y. W. Bao, X. H. Wang, H. B. Zhang and Y.C. Zhou, “Thermal Shock Behavior of Ti3AlC2 from Between 200℃ and 1300℃”, J. Europ. Ceram. Soc., vol. 25, 2005, pp. 3367-3374.
[72]C. Aksela, B. Randb, F. L. Rileyb and P. D. Warren, “Thermal Shock Behaviour of Magnesia–Spinel Composites”, J. Europ. Ceram. Soc., vol. 24, 2004, pp. 2839-2845.
[73]G. M. Song, Y. Wub and Q. Li, “Elevated Temperature Strength and Thermal Shock Behavior of Hot-Pressed Carbon Fiber Reinforced TiC Composites”, J. Europ. Ceram. Soc., vol. 22, 2002, pp. 559-566.
[74]Z. H. Jin and W. J. Luo, “Thermal Shock Residual Strength of Functionally Graded Ceramics”, Mater. Sci. Eng. A, vol. 435-436, 2006, pp. 71-77.
[75]J. Li and L. P. Ma, “Influence of Cobalt Phase on Mechanical Properties and Thermal Shock Performance of Al2O3-TiC Composites”, Ceram. Int., vol. 31, 2005, pp. 945-951.
[76]V. D. Krstic, “Effect of Microstructure on Fracture of Brittle Materials: Unified Approach”, Theoretical and Applied Fracture Mechanics, vol. 45, 2006, pp. 212-226.