跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:湯凱霖
研究生(外文):Kai-Lin Tang
論文名稱:氧化鋅對硫化鋅-二氧化矽複合陶瓷介電性質與熱震行為影響之研究
論文名稱(外文):Effects of ZnO on the Dielectric Properties and Thermal Shock Behaviors of Sintered ZnS-SiO2
指導教授:陳貞光
指導教授(外文):Jhewn-Kuang Chen
口試委員:張瑞東唐自標徐開鴻
口試委員(外文):Jui-Tung ChangTzu-Piao TangKai-Hung Hsu
口試日期:2008-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:ZnS-SiO2複合陶瓷熱壓燒結介電常數熱震強度
外文關鍵詞:ZnS-SiO2 composite ceramichot pressdielectric permittivitythermal shock
相關次數:
  • 被引用被引用:0
  • 點閱點閱:443
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硫化鋅-二氧化矽(ZnS-SiO2)複合陶瓷在本實驗中,以熱壓法於1060℃溫度且真空下進行燒結,並以不同之壓力控制獲得不同密度之材料,並與添加0.5-5 wt%之氧化鋅(ZnO)之試片相互比較陶瓷顯微組織、介電性質以及熱震性質之變化。ZnS-SiO2介電常數隨燒結密度增加而上升呈一線性關係,在13.56 MHz頻率測得之介電常數為6.3 ~ 8.03,高於Bruggeman及Lichtenecker方程式估算之結果,是由於奈米級細晶粒造成晶界表面積增加所致。添加ZnO之試片密度未如預期產生液相燒結效果而獲得提升,而與二氧化矽(SiO2)反應生成willemite(Zn2SiO4)相。添加0.5 ~ 5 wt%之氧化鋅(ZnO)在二氧化矽表面形成奈米級willemite相,使介電常數高於未添加之ZnS-SiO2陶瓷。本研究並利用熱震參數R''及R''之計算,估計ZnS-SiO2陶瓷的熱震行為,與熱震殘留強度結果相互符合,其不同溫度下之斷面型態由穿晶轉變成沿晶破壞是影響強度下降的因素。ZnO的添加使得ZnS-SiO2陶瓷界面強度獲得提升,而添加1% ZnO試片的破裂韌性增加且熱震參數值最高,因此有較好的抗熱震能力。
Zinc oxide- silicon dioxide (ZnS-SiO2) composite is prepared by hot press at 1060℃ in vacuum. Various pressures are used to obtain samples of different densities. A linear relationship is observed between dielectric permittivity and sintering density. The measured permittivity at 13.56MHz frequency is found to range from 6.3 to 8.03 which are higher than the estimated values for composite materials by the Bruggeman and Lichtenecker equations. The large grain boundary area arising from nano-size grains contributes to the increase of permittivity. Specimens with additions of 0.5-5 wt% zinc oxide are also made to compare with non-ZnO added specimens. ZnO appears to decrease the density of specimens slightly. However, ZnO addition can stabilize the high temperature ZnS phase. Additions of zinc oxide also increase the permittivity by forming nano-size Zn2SiO4 willemite phase at the surfaces of SiO2 particles. Thermal shock behaviors of these samples are also studied. The thermal shock parameters R'' and R'' are calculated, and they correspond well with the retained strength after thermal shock. Decrease of strength is caused by transfer of intragranular to intergranular fracture. Addition of zinc oxide can improve the interface strength of zinc sulfide-silicon dioxide composite ceramics. 1% zinc oxide added specimen demonstrates the best thermal shock resistance due to the balance between fracture toughness and interface strength.
摘 要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 4
第二章 文獻回顧與理論基礎 5
2.1 靶材種類與製備 5
2.1.1 靶材種類 5
2.1.2 靶材製備方法 5
2.2 複合材料介電常數估算方程式 12
2.2.1 Litchtenecker 方程式 12
2.2.2 Bruggeman 方程式 14
2.3 熱腐蝕原理與應用 16
2.4 材料熱震行為理論 18
2.4.1 熱震斷裂理論 18
2.4.2 熱震損害理論 19
2.5實驗規劃 20
第三章 實驗設備及步驟 22
3.1 實驗材料與儀器設備 22
3.1.1 實驗材料 22
3.1.2 儀器設備 22
3.2 實驗流程圖 23
3.2.1 粉末混合 24
3.2.2 熱壓燒結 24
3.3 材料分析 24
3.3.1 XRD相分析 24
3.3.2 密度量測 24
3.3.3 介電常數量測 25
3.3.4 熱腐蝕 25
3.3.5 熱震強度量測 26
3.3.6 硬度量測 26
3.3.7 破裂韌性量測 26
3.3.8 SEM觀察 27
第四章 結果與討論 28
4.1介電性質分析 28
4.1.1 XRD分析 28
4.1.2 熱腐蝕SEM綜合比較 33
4.1.3 介電常數與頻率之關係 38
4.1.4 介電常數與密度之關係 41
4.2熱震性質分析 46
4.2.1硬度與破裂韌性分析 46
4.2.2熱震強度與斷面分析 48
4.2.3熱震參數R''及R''分析 63
第五章 結論 65
參考文獻 67
[1]W.C.Lin, T.S.Kao, H.H.Chang, Y.H.Lin, Y.H.Fu, C.T.Wu, K.H.Chen and D.P.Tsai, “Study of a Super-Resolution Optical Structure: Polycarbonate/ ZnS-SiO2/ ZnO/ ZnS–SiO2/ Ge2Sb2Te5/ ZnS-SiO2,“ Jpn. J. Appl. Phys., vol.42, no. 2B, 2003, pp. 1029-1030.
[2]曾淑華,「CD-R光碟片仍是記錄型光碟片市場主流」, 工業材料,172期,2001,pp. 115-119。
[3]姜暭先,「DVD-R光碟技術發展」,工業材料,148期,1999,pp. 82-87。
[4]曾美榕, 「可複寫DVD光碟發展現況」,工業材料,157期,2000,pp. 113-117。
[5]曾美榕, 「DVD相變型光碟片發展現況」,工業材料,148期,1999, pp. 72-81。
[6]王東釧,王威翔, 「光碟之規格與結構」, 工業材料,150期,1999, pp. 139-149。
[7]王東釧,王威翔, 「相變化光碟材料系統簡介 (上)」,工業材料,143期,1998, pp. 154-159。
[8]王東釧,王威翔, 「相變化光碟材料系統簡介 (下)」, 工業材料,144期,1998, pp. 121-124。
[9]J. M. Blackmore and A. G. Culls, “The Structure of ZnS Thin Films Deposited by R.F. Sputtering,” Thin Solid Films, vol. 199, 1991, pp. 321-334.
[10]M. Oikkonen, M. Blomberg and T. Tuomi, “X-Ray Diffraction Study of Microstructure in ZnS Thin Films Grown from Zinc Acetate by Atomic Layer Epitaxy,” Thin Solid Films, vol. 124, 1985, pp. 317-321.
[11]E. K. Kim and S. I. Kwun, “Thermal Boundary Resistance at Ge2Sb2Te5/ZnS:SiO2 Interface,” Appl. Phys. Lett., vol. 76, no. 26, 2000, pp. 3864-3866.
[12]E. K. Kim and S. I. Kwun, “Heat Conduction in ZnS:SiO2 Composite Films,” Phys. Rev. B, vol. 61, no. 9, 2000, pp. 6036-6040.

[13]A. Goswami and A. P. Goswami, “Dielectric and Optical Properties of ZnS Films,” Thin Solid Films, vol. 16, 1973, pp.175-185.
[14]S. O. Nelson, “Density-Permittivity Relationships for Powdered and Granular Materials,” IEEE Trans. Instrum. Meas., vol. 54, no. 5, 2005, pp.2033-2040.
[15]S. O. Nelson, “Permittivity and Density Relationships for Granular and Powdered Materials,” IEEE Antennas and Propagation Society, AP-S Int. Symp. Dig., no. 1 , 2004, pp.229-232,.
[16]S. Trabelsi, A. W. Kraszewsky, and S.O.Nelson, IEEE Instrumentation and Measurement Technology Conference, Budapest, 2001, pp.1887-1892.
[17]A.C.Caballero Jr., F.FernBndez, C.Moure, and P.Duriin, “ZnO-Doped BaTi03: Microstructure and Electrical Properties,” J. Europ. Ceram. Soc., vol. 17, no. 5, 1997, pp.513-523,.
[18]S. Solomon, J. T. Joseph, H. P. Kumar and J. K. Thomas, “Effect of ZnO Doping on the Microwave Dielectric Properties of LnTiNbO6 (Ln=Sm or Dy) Ceramics,” Mater. Lett., vol. 60, 2006, pp.2814-2818.
[19]Y. B. Chen, C. L. Huang, and S. H. Lin, “Influence of ZnO Additions to 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 Ceramics on Sintering Behavior and Microwave Dielectric Properties,” Mater. Lett., vol. 60, 2006, pp.3591-3595.
[20]L. M. Levinson and H. R. Philipp, “The Physics of Metal Oxide Varistors,” J. Appl. Phys., vol. 46, no. 3, 1975, pp. 1332-1341.
[21]K. Eda, A. Iga and M. Matuoka, “Degradation Mechanism of non-Ohmic Zinc Oxide Ceramics,” J. Appl. Phys., vol. 51, no. 5, 1980, pp. 2678-2684.
[22]謝榮淵,「濺鍍靶材之製造方法介紹」, 技術與訓練,第27卷,第4期,2002,pp. 135-145。
[23]陳皇鈞譯,陶瓷材料概論,台北:曉園出版社,1988,pp. 475-477.
[24]黃坤祥,粉末冶金學,新竹:粉末冶金協會,2003,pp. 234-239.
[25]汪建民,陶瓷技術手冊,新竹:粉末冶金協會,1999,pp. 119-126.
[26]邱碧秀,電子陶瓷材料,台北:徐氏基金會,1994,pp. 81-159.

[27]K. Sangwal, Etching of Crystals- Theory, Experiment and Application, North-Holland: Amsterdam, 1987, pp. 100-101.
[28]T. Hirokawa, K. Honda and T. Shibuya, “Formation of Etch Hillocks in White Tin,” J. Cryst. Growth, vol. 24, 1974, pp. 484-487.
[29]H. L. Stadler, “Etched Hillocks in BaTiO3,” J. Appl. Phys., vol. 34, 1963, pp. 570-573.
[30]B. W. Batterman, “Hillocks, Pits, and Etch Rate in Germanium Crystals,” J. Appl. Phys., vol. 28, 1957, pp. 1236-1241.
[31]J. Weyher and W. J. P. Van Enckevort, “Selective Etching and Photoeyching of {l00} Gallium Arsenide in CrO3-HF Aqueous Solutions. II. The Nature of Etch Hillocks,” J. Cryst. Growth, vol. 63, 1983, pp. 292-298.
[32]C. G. de Andres, F. G. Caballero, C. Capdevila and D. S. Martin, “Revealimg Austenite Grain Boundaries by Thermal Etching : Advantages and Disadvantages,” Materials Characterization, vol. 49, 2003, pp. 121-127.
[33]C. C. Chang and Pouyan Shen, “Thermal-eting Development of α-Zn2SiO4 Polycrystals: Effects of Lattice Imperfections, Mn-dopant and Capillary Force,” Mater. Sci. Eng. A, vol.288, 2000, pp. 42-46.
[34]C. Aksel, P. D. Warren, “Thermal Shock Pararmeters [R, R’’’ and R’’’’] of Magnesia-Spinel Composite,” J. Eur. Ceram. Soc. vol.23, 2003, pp. 301-308.
[35]Z. Zhou, P. Ding, S. Tan and J. Lan, “A New Thermal-shock-resistance Model for Ceramics: Establishment and validation,” Mater. Sci. Eng., vol.405, 2005, pp. 272-276.
[36]D. P. H. Hasselman, “ Thermal Stress Resistance Parameters for Brittle Refractory Ceramics: A Compendium,” Ceram. Bull., vol. 49, no. 12, 1970, pp. 1033-1037
[37]D. P. H. Hasselman, “Theory of Thermal Shock Resistance of Semitransparent Ceramics Under Radiation Heating,” J. Am. Ceram. Soc., vol.49, no. 2, 1965, pp. 103-104.
[38]D. P. H. Hasselman, “Thermal Shock by Radiation Heating,” J. Am. Ceram. Soc. vol.46, no. 5, 1963, pp. 229-234.
[39]D. P. H. Hasselman, “Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics,” J. Am. Ceram. Soc., vol.52, no. 11, 1969, pp. 600-604.
[40]G. S. Brady, H. R. Clauster and J. A. Vaccari, Materials Handbook, New York: McGraw-Hill, 2002, 14th ed., pp. 990-994.
[41]F. Cardarelli, Materials Handbook, London: Springer, 2000, pp. 466-468.
[42]ASTM, “Standard Test Method for Determination of Thermal Shock Resistance for Advanced Ceramics by Water quenching,” Designation: C1525-04.
[43]P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method,” J. Am. Ceram. Soc., vol.64, no. 9, 1981, pp. 539-543.
[44]G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurement,” J. Am. Ceram. Soc., vol.64, no. 9, 1981, pp. 533-538.
[45]Z. Li, A. Ghosh, A. S. Kobayashi and R. C. bradt, “Indentation Fracture Toughness of Sintered Silicon Carbide in the Palmqvist Crack Regime,” J. Am. Ceram. Soc., vol.72, no. 6, 1989, pp. 904-911.
[46]K. Nihara, A. Nakahira and T. Hirai, “The Effect of Stoichiometry on Mechanical Properties of Boron Carbide,” J. Am. Ceram. Soc., vol. 67, no. 1, 1984, C-13-C-14.
[47]E. N. Bunting, “Phase Equilibrium in the System SiO2-ZnO,” J. Am. Ceram. Soc. vol.13, no.1, 1930, pp. 5-10.
[48]T. W. Dakin, “Conduction and Polarization Mechanisms and Trends in Dielectrics,” IEEE Electrical Insulation Magazine, vol.22, no. 5, 2006, pp. 11-28.
[49]A. K. Jonscher, “Dielectric Relaxation in Solids,” J. Phys. D: Appl. Phys., vol. 32, 1999, pp. R57-R70.
[50]M. S. Dash, J. Bera and S. Ghosh, “Effect of Porosity on Electrical Properties of Undoped and Lanthanum Doped BaTi0.6Zr0.4O3,” International Conference on Solid Dielectrics, Winchester, UK, 2007, pp. 8-13.

[51]B. P. Kumar, H. H. Kumar and D. K. Kharat, “Effect of Porosity on Dielectric Properties and Microstructure of Porous PZT Ceramics,” Mater. Sci. Eng. B, vol.127, 2006, pp. 130-133.
[52]F. Ragot, J. C. Badot, N. Baffier and A. Fourier-Lamer, “Influence of the Microstructure on Dielectric and Conducting Properties of Vanadium Pentoxide,” J. Mater. Chem., vol. 5, no. 8, 1995, pp. 1155-1161.
[53]C. G. Koops, “On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies,” Phys. Rev., vol. 83, no. 1, 1951, pp. 121-124.
[54]M. George, S. S. Nair, A. M. John, P. A. Joy and M. R. Anatharaman, “Finite Size Effects on the Electrical Properties of Sol-gel Synthesized CoFe2O4 Powders: Deviation from Maxwell-Wagner Theory and Evidence of Surface Polarization Effects,” J. Phys. D: Appl. Phys., vol. 40, 2007, pp. 1593-1602.
[55]M. George, S. S. Nair, A. M. John, P. A. Joy and M. R. Anatharaman, “Structural, Magnetic and Electrical Properties of the Sol-gel Prepared Li0.5Fe2.5O4 Fine Particles,” J. Phys. D: Appl. Phys., vol. 39, 2006, pp. 900-910.
[56]T. Asokan, “Grain Boundary Properties of Hot Pressed Zinc Oxide Varistors,” Mater. Res. Bull., vol. 28, 1993, pp. 1277-1284.
[57]W. G. Morris, “Physical Properties of the Electrical Barriers in Varistors”, J. Vac. Sci. Technol., vol. 13, no. 4, 1976, pp. 926-931.
[58]Y. Ohbuchi, T. Kawahara, Y. Okamoto, and J. Morimoto, “Distributions of Interface States and Bulk Traps in ZnO Varistors”, Jpn. J. Appl. Phys., vol. 40, no. 1, 2001, pp. 213-219.
[59]N. Saxena, B. K. Kuanr, Z. H. Zaidi and G. P. Srivastava, “Effect of Aluminium Substitution on Electric, Magnetic, and Microwave Properties of LiTi Ferrite,” Phys. Stat. Sol. (a), vol. 127, 1991, pp. 231-242.
[60]Q. Wang, O. Varghese, C. A. Grimes and E. C. Dickey, “Grain Boundary Blocking and Segregation Effects in Yittrium-doped Polycrystalline Titanium Dioxide,” Solid State Ionics, vol. 178, 2007, pp. 187-194.
[61]G. Zang, J. Zhang, P. Zheng, J. Wang and C. Wang, “Grain Boundary Effect on the Dielectric Properties of CaCu3Ti4O12 Ceramics”, J. Phys. D: Appl. Phys., vol. 38, no. 11, 2005, pp. 1824-1827.
[62]Y. Guo, H. Ohsato, and K. Kakimoto, “Characterization and Dielectric Behavior of Willemite and TiO2-doped Willemite Ceramics at Millimeter-microwave Frequency”, J. Europ. Ceram. Soc., vol. 26, 2006, pp. 1827-1830.
[63]H. Ohsato, “Microwave Materials with High Q and Low Dielectric Constant for Wireless Communications”, Mater. Res. Soc. Symp. Proc., vol. 833, 2005, pp. 55-62.
[64]J. Merikhi and C. Feldmann, “Adhesion of Colloidal SiO2 Particle on ZnS-Type Phosphor Surfaces”, J. Colloid and Interface Science, vol. 228, 2000, pp. 121-126.
[65]S. Ding, Y. P. Zeng and D. Jiang, “Thermal Shock Behavior of Mullite-bonded Porous Silicon Carbide Ceramics with Yttria Addition”, J. Phys. D: Appl. Phys., vol. 40, 2007, pp. 2138-2142.
[66]E. H. Lutz, M. V. Swain and N. Claussen, “Thermal Shock Behavior of Duplex Ceramics”, J. Am. Ceram. Soc., vol. 74, no. 1, 1991, pp. 19-24.
[67]M. Aldridge and J. A. Yeomans, “The Thermal Shock Behavior of Dutile Particle Toughed Alumina Composites”, J. Europ. Ceram. Soc., vol. 19, 1998, pp. 1769-1775.
[68]X. Q. You, T. Z. Si, N. Liu, P. P. Ren, Y. D. Xu and J. P. Feng, “Effect of Grain Size on Thermal Shock Resistance of Al2O3-TiC Ceramics”, Ceram. Int., vol. 31, 2005, 33-38.
[69]S. Ding, Y. P. Zeng and D. Jiang, “Thermal Shock Resistance of in situ Reaction Bonded Porous Silicon Carbide Ceramics”, Mater. Sci. Eng. A, vol. 425, 2006, pp. 326-329.
[70]G.. Rixeckera, K. Biswasa, A. Rosinusa, S. Sharmab, I. Wiedmanna and F. Aldingera, “Fracture Properties of SiC Ceramics with Oxynitride Additives”, J. Europ. Ceram. Soc., vol. 22, 2002, pp. 2669-2675.

[71]Y. W. Bao, X. H. Wang, H. B. Zhang and Y.C. Zhou, “Thermal Shock Behavior of Ti3AlC2 from Between 200℃ and 1300℃”, J. Europ. Ceram. Soc., vol. 25, 2005, pp. 3367-3374.
[72]C. Aksela, B. Randb, F. L. Rileyb and P. D. Warren, “Thermal Shock Behaviour of Magnesia–Spinel Composites”, J. Europ. Ceram. Soc., vol. 24, 2004, pp. 2839-2845.
[73]G. M. Song, Y. Wub and Q. Li, “Elevated Temperature Strength and Thermal Shock Behavior of Hot-Pressed Carbon Fiber Reinforced TiC Composites”, J. Europ. Ceram. Soc., vol. 22, 2002, pp. 559-566.
[74]Z. H. Jin and W. J. Luo, “Thermal Shock Residual Strength of Functionally Graded Ceramics”, Mater. Sci. Eng. A, vol. 435-436, 2006, pp. 71-77.
[75]J. Li and L. P. Ma, “Influence of Cobalt Phase on Mechanical Properties and Thermal Shock Performance of Al2O3-TiC Composites”, Ceram. Int., vol. 31, 2005, pp. 945-951.
[76]V. D. Krstic, “Effect of Microstructure on Fracture of Brittle Materials: Unified Approach”, Theoretical and Applied Fracture Mechanics, vol. 45, 2006, pp. 212-226.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. [2]曾淑華,「CD-R光碟片仍是記錄型光碟片市場主流」, 工業材料,172期,2001,pp. 115-119。
2. [2]曾淑華,「CD-R光碟片仍是記錄型光碟片市場主流」, 工業材料,172期,2001,pp. 115-119。
3. [4]曾美榕, 「可複寫DVD光碟發展現況」,工業材料,157期,2000,pp. 113-117。
4. [4]曾美榕, 「可複寫DVD光碟發展現況」,工業材料,157期,2000,pp. 113-117。
5. [5]曾美榕, 「DVD相變型光碟片發展現況」,工業材料,148期,1999, pp. 72-81。
6. [5]曾美榕, 「DVD相變型光碟片發展現況」,工業材料,148期,1999, pp. 72-81。
7. [6]王東釧,王威翔, 「光碟之規格與結構」, 工業材料,150期,1999, pp. 139-149。
8. [6]王東釧,王威翔, 「光碟之規格與結構」, 工業材料,150期,1999, pp. 139-149。
9. [7]王東釧,王威翔, 「相變化光碟材料系統簡介 (上)」,工業材料,143期,1998, pp. 154-159。
10. [7]王東釧,王威翔, 「相變化光碟材料系統簡介 (上)」,工業材料,143期,1998, pp. 154-159。
11. [8]王東釧,王威翔, 「相變化光碟材料系統簡介 (下)」, 工業材料,144期,1998, pp. 121-124。
12. [8]王東釧,王威翔, 「相變化光碟材料系統簡介 (下)」, 工業材料,144期,1998, pp. 121-124。
13. [22]謝榮淵,「濺鍍靶材之製造方法介紹」, 技術與訓練,第27卷,第4期,2002,pp. 135-145。
14. [22]謝榮淵,「濺鍍靶材之製造方法介紹」, 技術與訓練,第27卷,第4期,2002,pp. 135-145。