跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭書凱
研究生(外文):Shu-kai Kuo
論文名稱:利用機械合金化法製備銅基複合材料之研究
論文名稱(外文):Processing of Cu-matrix Composite by Mechanical Alloying
指導教授:徐開鴻
指導教授(外文):Kai-Hung Hsu
口試委員:黃坤祥陳貞光唐自標
口試日期:2008-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:76
中文關鍵詞:銅基複合材料機械合金化法氧化物散佈強化
外文關鍵詞:Cu-matrix compositeMechanical AlloyingOxide dispersion strengthened
相關次數:
  • 被引用被引用:1
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是將單一原始粉末Cu-10wt%Al合金粉,在大氣的環境下,利用機械合金化法製備成氧化物散佈強化(ODS)複合粉。固定轉速、BPR(Ball-to-powder ratio)、溫度等製程參數,改變攪磨的時間,從0hr ~ 40hr 每4小時為一單位,再以XRD、SEM、EDS、TEM及雷射粒度分析儀,分析粉末的相成分變化與型貌。從XRD分析結果中繞射峰值的偏移與晶格常數的變化,可了解富鋁相在銅晶格中的析出,配合SEM分析可觀察析出的富鋁相所形成第二相的散佈情形,經過EDS與TEM的分析可以確認散佈相為鋁氧化合物。在轉速600 rpm、BPR 80、溫度30℃及攪磨24hr時,可得到均勻性良好與奈米尺度的銅基氧化物散佈強化複合粉。
接著將攪磨24小時之複合粉,利用單軸熱壓的方式製成複合材料。經950℃持溫30分鐘與65MPa的熱壓壓力後,可得到緻密性為92%的銅基複合材料。且銅基複合材料硬度值比純銅高出許多,顯示氧化鋁的均勻散佈能有效阻礙差排的滑移,提升其機械性質。銅基複合材料中氧化鋁含量,會影響複合材料的電性與機械性質,隨著氧化鋁含量的增加,硬度有提高的趨勢,但抗彎強度及導電度則會降低。而經20%以下的熱加工量後,由於氧化鋁含量過高,使複合材料整體可塑性降低,因此密度、硬度及導電度並無明顯變化。
Pre-alloy Cu-Al(10wt%)powder is used for preparing oxide dispersion strengthen(ODS)composite powder through mechanical alloy(MA)method in normal atmospheres. Milling time is controlled form 0hr to 40hr , and 4hr as an unit. The process of phase change and morphology of particles are analyzed by XRD, SEM , EDS , TEM and Laser light scattering. Al atom precipitates in the Cu lattice is identified form the XRD results due to the diffraction peak shift and lattice parameters variation. Dispersion of the Al precipitation second phase is also observed by SEM. And the component of the precipitation phase is alumina confirmed by EDS and TEM. A homogeneous and nano-sized oxide dispersion strengthened Cu base composite powder is obtained with BPR 80 at 30℃and 600rpm for 24hr.
24 hour milled composite powder is then hot pressed of uniaxial to form bulk. A 92%relative density of Cu base composite is obtained with 65MPa hot press at 950℃ for 30 minutes. The hardness of Cu base composite is much higher than that of pure capper. The improve of mechanical properties is due to the block of dislocation by dispersion of alumina. The content of alumina also affect the electrical and mechanical properties of Cu base composite material. The bending strength and electrical conductivity increases as the alumina increases, but the hardness decreases. The density, hardness and electrical conductivity of 20% hot rolled Cu base composite material show no obvious variation due to the degradation of plasticity of high content of alumina.
摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1機械合金化法之發展歷史背景 1
1.2 機械合金法相關名稱與定義 2
1.3 機械合金法合成特殊材料之應用 3
1.4 機械合金化處理之特性 6
1.5 研究動機 6
第二章 原理與文獻回顧 8
2.1 粉末冶金簡介 8
2.2 機械合金化法 9
2.2.1 機械合金法的原理 9
2.2.2 機械合金法的合金機制 10
2.2.3 機械合金法材料反應系統 10
2.2.3.1 延性-延性系統 11
2.2.3.2 延性-脆性系統 12
2.2.3.3脆性-脆性系統 13
2.2.4 機械合金法之設備 14
2.2.4.1 SPEX shaker mills: 14
2.2.4.2 行星式球磨機(Planetary ball mills): 15
2.2.4.3 攪磨機(Attritor mills) 16
2.2.4.4 商業用球磨機(Commercial mills) 17
2.2.5 機械合金法之參數 17
2.2.5.1 球磨的型式 17
2.2.5.2 球磨的容器 17
2.2.5.3 球磨的速度 18
2.2.5.4 球磨的時間 18
2.2.5.5 球磨的媒介物 18
2.2.5.6 磨球與粉體的配比(BPR) 19
2.2.5.7 磨料在磨筒中可裝填的限度範圍 19
2.2.5.8 球磨的氣氛 20
2.2.5.9 製程控制的媒介(PCA) 20
2.2.5.10 研磨的溫度 20
2.3 複合材料 21
2.3.1 複合材料之簡介 21
2.3.2 散佈相之選擇 22
2.3.3 散佈強化機制 23
2.3.4 散佈強化效果 25
2.4 熱壓成型 27
第三章 實驗方法與步驟 29
3.1 原料粉末 29
3.2 實驗流程 30
3.2.1 複合粉製備過程 30
3.2.2 單軸熱壓燒結製程 33
3.2.3 熱軋製程 34
3.3 材料分析 35
3.3.1 XRD 分析量測 35
3.3.2 SEM & EDS 分析量測 36
3.3.3 TEM分析量測 37
3.3.4 雷射粒度量測 38
3.3.5 密度之量測 39
3.3.6 硬度之量測 39
3.3.7 三點抗彎強度之量測 40
3.3.8 電性之量測 40
第四章 結果與討論 42
4.1 複合粉之製備與分析 42
4.1.1 XRD分析 43
4.1.2 SEM分析 48
4.1.3 TEM分析 55
4.1.4 雷射粒度分析 59
4.2 複合材料之製備 60
4.2.1 熱壓條件對性質的影響 60
4.2.2 熱加工對性質的影響 65
4.2.3 電性分析 69
第五章 結論 72
參考文獻 73
[1] P.S Gilman and J.S Benjamin , Mechanical Alloying , Ann.Rev.Mater.Sci. , 13(1983)279
[2] C.C Koch , O.B. Cavin , C.G. Mckamey and J.O. Scarbeough , Preparation of “amorphous” Ni60Nb40 by Mechanical Alloying Appl. Phys.Lett.43(1983)1017.
[3] C. Poltits , Amorphous Superconducting Nb3Ge and Nb3Ge1-xAlx Powders Prepared by Mechanical Alloying , J.de Physique. , 46(1985)C8-573
[4] F.Petzoldt , Synthesis and Process Characterization of Mechanically Alloyed Amorphous Ni-Nb Powders , J. Less-Common Met., 140(1988)85.
[5] P.Y. Lee and C.C. Koch , The formation and Thermal Stability of Amorphous Ni-Nb Alloy Powder Synthesized by Mechanical Alloying , J. Non-Cryst. Solids , 94(1987)88.
[6] M. Perret , H. Mehrer and N.A. Stolwijk , Synthesis of Amorphous Co-Nb Alloy Powders by Mechanical Alloying , Detect and Diffusion Forum , 66-69(1989)1343.
[7] J.Y. Yang , T.J. Zhang , K. Cui , X. Li , and J. Zhang , Amorphization of Fe-Nb by Mechanical Alloying , J. of Alloys and Compounds , 242(1966)153.
[8] M.H. Enavati , Synthesis and Process Characterization of Mechanically Alloyed Amorphous Ni-Nb Powders Material Science Forum , 235-238(1997)83.
[9] MS El-Eskandarany, K Aoki, K Suzuki. J Less-Common Metals 167(1990)113-8.
[10] M.J. Luton, C.S. Jayanth, M.M. Disko, M.M. Matras, J. Vallone In: L.E. McCandlsih, D.E. Polk, R.W. Siegel, B.H. Kear, editors. Multicomponent ultraine microstructures, vol. 132. Pittsburgh, PA: Mater Res Soc,(1989)79-86.
[11] Suryanarayana, C., Ivanov, E. and Boldyrev, V.V., “The Science and Technology of Mechanical Alloying,"Mater. Sci. Eng., A304-306, pp.151-158, 2001
[12] X.L. Yeh , K. Samwer , and W.L. Johnson , Appl. Phys.Lett. , 242(1983)42.
[13] R.B. Schwarz , R.R. Petrich , and C.K. Saw , J.Non-Cryst.Solids , 281(1985)76.
[14] E. Hellstrern , L. Schultz , R. Bormann , and D. Lee , Appl.Phys.Lett. , 1399(1988)53.
[15] E. Ivanov , T. Grigorieva , G. Gdubkova , V. Blodyrev , A.B. Fasman . S.D. Mikhailenko , and O.T. Kalinina , Mat.Lett. , 51(1988)7.
[16] R. Sundaresan , F.H. Foress , New Material by Mechanical Alloying Techniques , E. Arzt , L. Schultz , 235(1989)ed…
[17] E. Hellstern , H.J. Frcht , Z. Fu , W.L. Johnson , J.Appl.Phys. , 305(1989)65.
[18] C.C Koch , Mat.Trans.JIM , 85(1995)
[19] Baohong Tian, Ping Liu; Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion-strengthened copper base composite;Materials Science and Engineering: A vol.435-436(2006)705-710.
[20] A.V.Nadkarni.In:E.Ling and P.W. Taubenblat , High conductivity Copper and Aluminum Alloys, The Metallurgical of AIME, Warrendale,PA,(1984)77.
[21] Tung keng-hua , Hsu kai-hung;Processing of Cu-ZnO composite powder by MA Method;(2006)1-84.
[22] M.T. Marques , V. Livramento ; Study of early stages of Cu–NbC nanocomposite synthesis;Journal of Alloys and Compounds 434–435 (2007) 481–484.
[23] R.H. Palma , A.O. Sepulveda;High-temp. mechanical behaviour of Cu-Al2O3-TiC alloy obtained by RM;M.S.E. A384(2004)262-269.
[24] M. Lopez , D.Corredor ; Performance and characterization of dispersion strengthened Cu-TiB2 composite for electrical use.;Materials Characterization 55(2005)252-262.
[25] Kiyoshi Ichikawa, Masakazu Achikita. Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting, Materials Transactions,JIM, 34(1933)718-724.
[26] J. Lee, J.Y. Jung, Eon-Sik Lee et al. Microstructure and proprieties of titanium Boride dispersed Cu alloys fabricated by spray forming, Materials Science and Engineering, A277(2000)274-283.
[27] C. Suryanarayana;Mechanical alloying and milling;Progress in Materials Science 46(2001)1-184.
[28] C.C Koch and J.D. Whittenberger , Mechanical milling/alloying of intermetallics , 339(1996)4.
[29] P.Y. Lee and C.C. Koch , Appl. Phys .Lett. 1578(1987)50
[30] Di LM, Bakker H. J Phys C: Condens Matter 3(1991)3427-32.
[31] S.D. Kaloshkin, I.A. Tomlin, G.A. Andrianov, U.V. Baldokhin, E.V. Shelekhov. Mater Sci Forum(1997)235-238:565-70.
[32] M. Atzmon. Phys Rev Lett 64(1990)487-90.
[33] Z.H. Chin, T.P. Perng. Mater Sci Forum121-6 (1997)235-238.
[34] K. Varga, D.L. Beke. Mater Sci Forum 465-70(1996)225-227.
[35] Y. Ogino, T. Yamasaki, S. Maruyama, R. Sakai. J Non-Cryst Solids 737-40(1990)117/118.
[36] R.B. Schawrz and C.C. Koch , Formation of Amorphous Alloys by the Mechanical Alloying of Crystalline Powders of Pure Metals and Powders of Intermetallics , Appl.Phys.Lett. , 146(1986)49.
[37] 段宜,複合材料,台北新文京開發出版公司,2002, P.1、428。
[38] S.B. Wu , R.J. Araenault , Mater.Sci.Eng. , (1991)A38.
[39] J.C. Ehrstron , W.H. Kool , J.of Mater.Sci. , 3195(1998)23.
[40] D.F. Davidson , Met.Trans. , 97(1991)22A.
[41] G.E. Dieter , ed. , Mechanical Metallurgy , McGraw-Hill , (1998).
[42] R. Donald. Askeland, The Science and Engineering of Materials, 3rd edition, pp2-138.
[43] The Science and Engineering of Materials , third edition , 2-137 ,3-198.
[44] J. R¨osler, E. Arzt, Acta Metall. et Mater. 38 (1990) 671–683.
[45] E. Arzt , P. Grahle , Z. Metallkd. 87 (1996) 874–884
[46] G. E. Dieter, Mechanical Metallurgy , pp.212-231.
[47] 汪健民,陶瓷技術手冊,新竹:粉末冶金協會,1999,pp.119-126.
[48] 莊純瑜,Cu- Al2O3播散強化型複合合金之機械合金化法製程研究,民國93年七月。
[49] D.Y. Ying , D.L. Zhang , Solid state reactions between CuO and Cu(Al) or Cu9Al4 in mechanically milled composite powders;Materials Science and Engineering A361 (2003) 321–330.
[50] 黃坤祥,粉末冶金學,中華民國粉末冶金協會,2001年,P.238。
[51] O. Guler , E. Evin , The investigation of contact performance of oxide reinforced copper composite via mechanical alloying ; Material Processing Technology(2008),article in press.
[52] 梁淑華,范志康,時惠英,魏兵,「超細Al2O3顆粒增強銅基復合材料的研究」,復合材料學報,第15卷,第3期,1998。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top