跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/29 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡永承
研究生(外文):Yung-Cheng Tsai
論文名稱:高溫型固態氧化物燃料單元電池之製程研究
論文名稱(外文):Preparation of Single Cell of Solid Oxide Fuel Cell
指導教授:王錫福
指導教授(外文):Sea-Fue Wang
口試委員:曹中亞吳玉娟徐永富
口試日期:2008-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:78
中文關鍵詞:固態氧化物燃料電池釔安定氧化鋯添加鍶的錳酸鑭共燒
外文關鍵詞:Solid Oxide Fuel Cell (SOFC)Yttria-stablized Zirconia (YSZ)Sr-doped Lanthanμm Manganitei (LSM )Co-firing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池是一種利用電化學反應的發電裝置,燃料電池與一般電池不同,可不經燃燒過程,可直接將化學能轉換成電能,是眾所矚目的新一代的替代能源技術。固態氧化物燃料電池 (Solid Oxide Fuel Cell) 為其中一種裝置,它具有無污染、高發電效能的優點,但是由於成本高且須於高溫下操作,對材料的匹配性要求較高,故運用上仍有所限制。本論文之研究主要針對高溫型固態氧化物燃料電池中之主要元件製造,其中包含電解質、陽極、陰極所組成的單元電池的燒結。實驗粉末採用目前商業生產中最常使用的高溫型材料,電解質為8mol%釔安定氧化鋯(Yttria-stablized Zirconia,簡稱8YSZ);陽極為NiO-YSZ;陰極為20LSM-YSZ,主要通過兩方面的探討來獲得平坦且性能良好的陽極支撐型單元電池元件。首先,通過改變不同Binder成分及比例來調整不同材料燒結後的收縮率,以達到最佳的匹配性﹔其次,按所選擇的Binder配方製備陽極和電解質層薄帶,並通過疊層、熱壓壓合在一起,並探討不同溫度下材料共燒後的顯微組織及性能。實驗結果發現,當使用高聚合度和低聚合度的高分子材料混合作Binder時,可使8YSZ粉末的電解質材料與添加30vol%的NiO-YSZ的陽極材料有最好的燒結匹配性。且陽極與電解質層的共燒溫度為1375℃時,陽極可達到32.45%最高的孔隙率,電解質層的相對密度可達到96.40%。實驗得到厚度20μm緻密的電解質層及厚度680μm的陽極NiO-YSZ層平整之結構。將共燒後之平整試片再於電解質層面網印上厚度約60μm之陰極20LSM-YSZ層,於1100℃至1300℃之間燒結處理,得到完整之SOFC單元電池結構,再於700℃氫氣氣氛下作NiO還原成Ni之處理。在測試溫度900℃、5 vol% 氫氣-氮氣混合氣體流量80 ml/min 時,水氣潤濕或無潤濕的條件下,其測得功率密度為0.09W/cm2。
The Solid Oxide Fuel Cell (SOFC) is an electrochemical device, which converts chemical energy directly into electrical energy without an intermediate step of conversion to heat. Fuel cell technology is an extremely promising method for electrical power generation due to its ability to achieve very high efficiency with very low level of pollutant. There are a lot of challenges in application due to its high operation temperature. In this study we plan to manufacture a planar Solid Oxide Fuel Cell (SOFC) which contains anode, cathode and electrode. NiO-YSZ, 8YSZ, 20LSM are chosen for study due to their common use in commercial production. Firstly, we change the constituent and ratio of Binder to study the shrinkage ratio of different materials﹔ Secondly, we fabricate the anode and electrolyte green foil follow the recipe, press them as a substrate then co-sinter at different temperature. The microstructure and the characteristics are referred for the appropriate sinter temperature, such as the porosity ratio of the anode and the relative density of the electrolyte. We find that when the high polymerization degree and low polymerization degree macromolecule are mixed for Binder, 8YSZ powder for electrolyte material and 30vol% carbon doped NiO-YSZ for anode material show good compatibility under sintering at 1375℃. The porosity ratio of the anode is 32.45% and the relative density of electrolyte reach to 96.40%. We manufacture a flat substrate with 680μm anode and 20μm electrolyte. Then the cathode material 20YSM-YSZ is printed on the electrolyte by screen printing and sintered at 1100℃~1300℃. At last the cell is annealled under 700℃ in hydrogen atmosphere. When the testing temperature is 900℃, the energy density of complete single cell reach to 0.09W/cm2 in 5vol% hydrogen and nitrogen mixed gas with 80 ml/min flow rate.
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 4
1.3 燃料電池的發展近況 7
第二章 文獻回顧與理論背景 8
2.1 燃料電池的歷史介紹 8
2.2 固態氧化物燃料電池(SOFC)的原理 8
2.3 固態氧化物燃料電池(SOFC)組成基本結構 9
2.3.1 電解質 10
2.3.2 電極材料 13
2.3.2.1 陽極材料 13
2.3.2.2 陰極材料 15
2.4 平板式SOFC的燒製方法 18
2.4.1 陽極板的製備 19
2.4.2 電解質薄膜的製備 20
2.4.3 陰極薄膜的製備 20
2.4.4 單元電池的製備 20
2.5 漿料添加劑的影響 22
2.5.1 粉體固含量的影響(Solid loading) 22
2.5.2 溶劑的影響(Solvent) 23
2.5.3 黏結劑的影響(Binder) 23
2.5.4 塑化劑的影響(Plasticizer) 26
2.5.5 分散劑的影響(Dispersant) 26
2.6 固態燒結 26
2.6.1 燒結三階段 26
2.6.2 緻密化與粗化 28
第三章 實驗流程與量測 31
3.1 實驗藥品 31
3.2 實驗流程 31
3.2.1 材料基本特性量測 31
3.2.2 Binder配方實驗 32
3.2.3 陽極與電解質共燒溫度實驗 34
3.2.4 陽極添加不同碳黑比例實驗 36
3.2.5 單元電池電性製備及量測 36
3.3 儀器/設備規格與操作條件 36
3.3.1 X-ray繞射分析(XRD) 36
3.3.2 熱重分析儀(TGA)&熱差分析儀(DTA) 36
3.3.3 比表面積分析儀 37
3.3.4 數位式黏度計 37
3.3.5 雷射粒徑分析儀(Horiba LA-950) 38
3.3.6 掃描式電子顯微鏡分析(SEM) 38
3.3.7 真密度儀(Gas Pycnometer) 38
3.3.8 熱膨脹分析儀(Dilatometer, DIL ) 39
3.3.9 刮刀成形機(Tape casting) 39
3.3.10 網印機(Screen Printing) 40
3.3.11 拉力及破斷試驗機 41
3.3.12 電化學分析與高溫量測設備 41
3.3.13 其他實驗儀器及設備 42
第四章 結果與討論 43
4.1 材料基本特性量測 43
4.2 Binder配方實驗結果 48
4.2.1 單Binder與雙Binder配方結果 48
4.2.2 8YSZ、NiO-YSZ+30vol%碳黑、NiO-YSZ球磨後的
粒徑量測結果 49
4.2.3 薄帶TG/DTA曲線分析 51
4.2.4 單Binder與雙Binder的薄帶拉力與收縮率結果 51
4.3 陽極與電解質共燒實驗結果 55
4.3.1 熱膨脹分析曲線 55
4.3.2 XRD相結構分析 56
4.3.3 SEM顯微組織分析 57
4.3.4 電解質層與陽極層相對密度及孔隙率比較 60
4.3.5 單元電池破斷強度 60
4.3.6 單元電池平整度 61
4.4 陽極添加不同碳黑比例實驗結果 62
4.4.1 燒結收縮率與孔隙率比較結果 62
4.4.2 平整度比較結果 63
4.4.3 SEM顯微組織分析 64
4.5 單元電池實驗量測結果 65
4.5.1 XRD相結構分析 65
4.5.2 陰極SEM顯微組織分析 67
4.5.3 單元電池的I-V曲線量測結果 68
4.5.4 單元電池的外觀圖 69
第五章 結論 70
參考文獻 72
【1】 衣寶廉、黃朝榮 編著,"燃料電池-原理與應用",五南圖書。
【2】 李邦哲譯,“燃料電池”,台灣經濟研究月刊,第72-74頁。
【3】 呂承頤,“燃料電池在太空之應用”,能源、資源與環境,第三卷,第1期,1990,第2-6頁。
【4】 徐日豐、陳建忠 著作,“固態氧化物型燃料電池連接板熱應力分析”,核能研究所工程及設施運轉組。
【5】 黃炳照,鄭銘蕘“,固態氧化物燃料電池之進展”,化工技術,第111期,民國91年6月,第135頁。
【6】 Tributsch. H.;Challenges for (photo) electrocatalysis research.Catalysis Today 1997, 39,(3)177-186.
【7】 Winkler. W. Lorenz, H. The design of stationary and mobile solid oxide full cell-gas turbine system. Journal of Power Sources 2002, 105, (2), 222-227.
【8】 Kendall. K. Finnerty, C. M. Tompsett, G. A. Windbank, P. Coe;N. Rapid heating SOFC system for hybrid applications. Electrochemistry 2000, 68, (6), 403-406.
【9】 洪永杰,“固態氧化物燃料電池專利檢索與分析報告”,元智大學(2005)。
【10】N. Robertson and J. N. Michaels, J. Electrochem. Soc. 137, 129(1990).
【11】 K. Kinoshita, “Electrochemical Oxygen Techenology”, Wiley. New York, Chap.2 & Chap 4(1992).
【12】 T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack” Solid State Ionics,
Vol. 148, 2002, pp.513-519.
【13】 黃鎮江 編著,"燃料電池",全華科技圖書。
【14】 Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda and N. Imanishai, “Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides system)”, Solid State Ionics 121 (1999) 133.
【15】 S. P. S. Badwal and J. Drennan, “Yttria-zirconia: effect ofmicrostructure on conductivity”, Journal of Materials Science 22(1987) 3231.
【16】 E. C. Su Binderarao, and H. S. Maiti, Solid electrolytes with oxygen ion conduction, Solid State Ionic, New York, pp.109(1980) .
【15】 H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, “Oxygen Ion Conductivity of the Ceria-Samariμm Oxide System with Fluorite Structure”, J. Appl. Electrochem. 18 (1988) 527.
【18】M. Mogensen, T. Lindeg Binderrd, U.R. Hansen and G. Mogensen, Properties of CeO2-based SOFC anode materials, J. Electrochem. Soc., 141, pp.21-22(1994).
【19】H. Marko, A. K. Ariane, S.Zoran and H.Janez,Interactions between Ianthanum gallate based Solid electrolyte and ceria, Materials Research Bulletin, Vol. 34, No. 12/13, pp.2027-2034(1999).
【20】 M. Hrovat, J. Holc, and S. Bernik, Subsolidus phase equilibria in the
NiO-CeO2 and La2 O3 -CeO2 -Fe2O3 system, Materials Research Bulletin, 33,pp, 1175(1998).
【21】 K. Eguchi, “Ceramic materials containing rare earth oxides for solid oxides for solid oxide fuel cell”, J. of Alloys and Compounds, 250(1997) 486.
【22】 F. M. B. Marques and L. M. Navarro, “Performance of Double layer
electrolyte cells PartⅠ, Model behavior, Solid State Ionics 90 (1996)183.
【23】 T. Inoue, T. Setoguchi, K. Eguchi and H. Arai, “Study of a solid oxide fuel cell with a ceria-based solid electrolyte”, Solid State Ionics 85 (1989) 285-291.
【24】 N. Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells(1995).
【25】 W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells” Materials Science and Engineering, Vol. A362, 2003, pp. 228-239.
【26】 D. Simwonis, F. Tietz and D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”, Solid State Ionics 132 (2000) 241-251.
【27】 W. Z. Zhu and S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering A362 (2003) 228–239.
【28】 S. P. Jiang and S. H. Chan, “A review of anode materials development in solid oxide fuel cells”, J. Mater. Sci. (2004) 4405 – 4439.
【29】 A. Ringuede, J. A. Labrincha and J. R. Frade, “A combustion synthesis method to obtain alternative cermet materials for SOFC anodes”, Solid State Ionics 141–142 2001 549–557.
【30】 F. Chen and M. Lium, “Study of transition metal oxide doped LaGaO3
as electrode materials for LSGM-based solid oxide fuel cells”, J Solid
State Electrochem 3 (1998) 7-14.
【31】 Q. Fu, X. Xu, D. Peng, X. Liu and G. Meng, “Preparation and electrochemical characterization of Sr- and Mn-doped LaGaO3 as anode materials for LSGM-based SOFCs”, J. Mater. Sci. 38 (2003)2901 – 290.
【32】 N. Maffei and G. de Silveira, “Interfacial layers in tape cast anode-
supported doped lanthanμm gallate SOFC elements”, Solid State Ionics 159 (2003) 209– 216.
【33】 陳誦英,王峰雲,鄭淑芬,“固體氧化物燃料電池(SOFC)研究進展和發展動態 ”(2003)。
【34】 G. Pudmich, B.A. Boukamp, M.G. Cuenza, W. Jungen, W. Zipprich and F.Tietz, Solid State Ionics, 135, 433 (2000).
【35】 H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials, ” Fuel Cells, Vol. 1, 2001, pp. 117-131.
【36】 R. M. Ormerod, “Solid Oxide Fuel Cells” Chemical Society Reviews, Vol. 32, 2003, pp.17-28.
【37】 A. Hartley, M. Sahibzada, M. Weston, I.S. Metcalfe and D.Mantzavinos, “La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells”, Catalysis Today 55(2000) 197.
【38】 O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, “Perovskite-type
Oxides as Oxygen Electrodes for High Temperature Solid Oxide Fuel
Cells”, Solid State Ionics 22 (1987) 241-246.
【39】 S. P. Jiang, “Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells”, Journal of Power Sources 124 (2003) 390-402.
【40】 T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber and E. Ivers-
Tiffee, “Stability at La0.6Sr0.4CoO.3-d cathode/ La0.8Sr0.2Ga0.8Mg0.2O2.8
electrolyte interface under current flow for solid oxide fuel cells”, Solid State Ionics 138 (2000) 143–152.
【41】 T. Tsai, S A Barnett, “Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fue cell performance”, Sold State Ionics, 93(1997)207-217
【42】 N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel
Cells, Elsevier, Amsterdam, The Netherlands, 1995.
【43】 S.C. Singhal, in: S.C. Singhal, M. Dokiya (Eds.), SOFC VI, The Electrochemical Society, Pennington, NJ, 1999, p. 39.
【44】 M. Prisca, T. Alston, K. Kendall, U. Stimming, S.C. Singhal, H.Tagawa, W. Lehnert (Eds.), SOFC V, The Electrochemical Society, Pennington, NJ, 1997, p. 619.
【45】 M. S. S. Hsil, W. E. Morrow and J. B. Goodenough, in “Proceedings
of the 10th intersociety Energy Conversion Engineering Conference”, 555(1975).
【46】 B. C. H. Steele, C. A. Leach, R. A. Rudkin, N. Khan and M.H. Huang,
1990 Fuel Cell Seminar in Arizona(USA), 123(1990).
【47】 J. Liu. W. Liu, Z. Lu, L. Pei, L. Jia, L.Y. He, W.H. Su, Study on the properties of YSZ electrolyte made by plaster casting method and the applications in solid oxide fuel cells, Solid State Ionics 118 (1999)67– 72.
【48】 Hibino, T. et al., One-chamber solide oxide fuel cell constructed from a YSZ electrolyte with a Ni-anode and LSM cathode Solid State Ionics, 2000, 127, 89–98.
【49】 Baythoun, M. S. G. and Sale, F. R., Production of Sr–LaMnO3 perovskite powder by amorphous citrate process. J. Mater. Sci., 1982, 17, 2757–2769.
【50】 Z Cai, T N Lan, S Wang, M Dokiya, ”Supported Zr(Sc)O2 SOFCS for reduced temperature prepared by slurry coating and co-firing”, Solid State Ionics, 152-153(2002)583-590.
【51】 H Ohtui, T Matsushima, T Hirai,“Performance of a solid oxide fuel cell
fabricated by co-firing”, Journal of Power Sources, 71(1998)185-189.
【52】 J-H Kim, R-H Song, K-H Song, S-H Hyun, D-R Shin, H Yokokawa“Fabrication and characteristics of anode-supported flat-tube solid oxide fuel
cell”, Journal of Power Sources, 122(2003)138-143.
【53】 S de Souza, S J Visco, L C De Jonghe,“Thin-film solid oxide fuel cell with high performance at low-temperature”, Solid State Ionics, 98(1997)57-61.
【54】 E Wanzenberg, F Tietz, P Panjan, D Stover,“Infuence of pre- and post-heat treatment of anode substrate on the properties of DC-sputtered YSZ electrolyte films”, Solid State Ionics, 159(2003)1-8.
【55】 Pk Srivastava, T Quach, Y Y Duan, R Donelson, S P Jiang, F T Ciacchi, S P S Badwal, “Electrode supported sold oxide fuel cells:Electrolyte films prepared by DC magnetron sputtering”, Solid State Ionics, 99(1997)371-319.
【56】 J Han, Y Zheng, G Xomeritakis, Y S lin,“Electrochemical vapor deposition synthesis and oxygen permeation properties of dense zirconia-yttria-ceria membranes”, Solid State Ionics, 98(1997)63-72.
【57】 T Mathews, P Manoravi, M P antony, J R Sellar, B C Muddle,“Fabrication of La1-xSrxGa1-yMgyO3-(x+y)/2 thin films by pulsed laser ablation”, Solid State Ionics, 135(2000)397-402.
【58】 D. Stoveer, H. P. Buchkremer, W. Diehl and R. Vaben, “Injection Moiding with Ultra High Solid Loading,” Powder Injection Molding Symposiμm, pp.287-293, 1992.
【59】 A. D. Philipse, B. C. Bonelcamp and H. J. Veringa, “Colloidal Filtration and (Simultaneous) Sedimentation of Alμmina and Silita Suspensions: Influence of Aggrogates” J. Am. Ceram.. Soc. Vol.73, n.9, pp.2720-2727, 1990.
【60】 陳聰文、傅坤福 “ LTCC 材料多層製程開發及其應用” 工業材料148 期88 年4 月。
【61】 J. H. Jean, S. F. Yeh and C. J. Chen, “Adsorption of Poly(vinyl butyral) in nonaqueous ferrite suspensions,” J. Mater. Res.12,(1997)1062.
【62】 Laboratory Report, The Role of Slip Additives in Tape-Casting Technology: Part I-Solvent and Dispersants, Vol.11 ME71, No.10, October 1992
【63】 J. S. Hirchhorn, “Introduction to Powder Metallurgy,” American Powder
Metallurgy Institute, 1969, pp.158.
【64】 R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State
Diffusion Models,” J. Appl. Phys., 32, 1961, pp.787-792.
【65】 R. L. Coble, “Intermediate-State Sintering: Modification and Correction of
Lattice-Diffusion Model,” J. Appl. Phys., 36, 1965, pp.2327.
【66】 W. D. Kingery and M. Berg, “Stidy of the Initial Stages of Sintering Solids
by Viscous Flow, Evaporation-Condensation, and Self-Diffusion,” J. Appl.
Phys., 1955, 26, pp.1205-1212.
【67】 S. P. S. Badwal and M. V. Swain, “ZrO2-Y2O3: Electrical Conductivity of
Some Fully Partically Stabilized Single Grains,” J. Mater. Sci. Lett., 4,
1985, pp.487-489.
【68】 I. J. Mccolm and N. J. Clark, in: Forming, Shaping and Working of High-performance Ceramics, published by Chapman and Hall, New York(1989).
【69】 I. R. Gibson, S. P. Dransfield and J. T. S. Irvine, ”Sinterability of Commercial
8 mol% Yttria-Stabilized Zirconia Powders and the Effect of Sintered Density on the Ionic Conductivity,” Journal of Materoals Science, 33, 1998, pp.4297-4305.
【70】 I. Abraham and G. Gritzner, “Mechanical Properties of Doped Cubic Zirconia Ceramics,” Journal of Materoals Science Letters, 12, 1993, pp.995-997.
【71】 X. J. Chen, K. A. Khor, S. H. Chan and L. G. Yu, “Influence of Microstructure on The Ionic Conductivity of Yttria-Stabilized Zirconia Electrolyte,” Materials Science and Engineering, A335, 2002, pp.246–252.
【72】 邱吉晟,“生陶瓷體內高分子黏合劑熱解程序之最佳化控制”,元智大學碩士論文,民國93年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊