跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯政廷
研究生(外文):Cheng-Ting Ke
論文名稱:機車引擎油膜動態之研究
論文名稱(外文):Study of Characteristics of Fuel Film Dynamics for Scooter Engine
指導教授:吳浴沂
指導教授(外文):Yuh-Yih Wu
口試委員:陳柏全葉啟南
口試委員(外文):Bo-Chiuan ChenChi-Nan Yeh
口試日期:2008-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:92
中文關鍵詞:油膜動態壁濕現象系統判別
外文關鍵詞:Fuel Film DynamicsWall WettingSystem Identification
相關次數:
  • 被引用被引用:3
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究配合國內機車產業的需求與發展,針對機車燃油噴射系統所產生的壁濕現象(wall wetting)進行探討。首先使用Matlab/Simulink建立非線性機車引擎模型,再使用系統判別中遞迴最小平方法(Recursive Least Square, RLS)將非線性的油膜動態模型辨識為一階線性模型,接著利用機車引擎模型模擬所辨識出之油膜動態模型,由模擬結果顯示,預估之油膜動態相當準確。再針對不同的引擎操作狀態,如噴射正時、進氣溫度…等進行實驗,定量地求得進氣管壁上之燃油沈積比例(x)及油膜蒸發常數(τ),藉此求出油膜動態之特性參數。將實驗操作點設定在引擎轉速為3000rpm、節氣門開度為25%的運轉條件下,由實驗結果可發現,當進氣溫度提高,燃油沈積比例(x)及油膜蒸發常數(τ)會隨之降低。而在噴射正時方面,當燃油於汽門開啟時噴射,燃油沈積比例(x)及油膜蒸發常數(τ)亦有降低之趨勢。在不同轉速與負荷的實驗方面,實驗轉速定在2000rpm至7000rpm,以每1000rpm做為一測試條件點,由實驗結果發現,當引擎轉速增加,連帶增加進氣氣流的動能,提高熱傳與質傳的速度,使得燃油不易累積於壁面上,燃油沈積比例(x)及油膜蒸發常數(τ)有降低的現象。
This paper investigated the phenomenon about wall wetting in scooter engine. A nonlinear engine model is established by Matlab/Simulink to simulate the fuel film dynamics. The fuel film dynamics model will be identified as the first order model. The recursive least squared technique is employed to identify the wall-wetting phenomena. The simulation results show that proposed model for fuel film dynamics has good results as predict. In the engine experiment, the author set up different engine operation conditions, for example, various fuel injection timings and intake temperatures. The experimental results show that when the intake temperature increased, the portion of fuel that deposited on the manifold wall (x) and the time constant of the fuel evaporation process (τ) will be decreased. Moreover,x and τ decreased as the fuel injected and the intake valve opened at the same time. As engine speed increases,x and τ will decrease due to an increase in forced heat and mass convection.
摘 要 i
ABSTRACT i
誌 謝 ii
目 錄 iii
表目錄 v
圖目錄 vi
第一章 前言 1
1.1 研究背景及動機 1
1.2 文獻回顧 4
1.3 壁濕現象及其影響因素 7
1.4 研究目的及方法 16
第二章 引擎模型 17
2.1 進氣動態 17
2.2 燃油動態 19
2.3 扭力動態 20
2.4 摩擦動態 22
2.5 旋轉動態 24
第三章 系統判別策略 26
3.1 油膜動態系統識別模型及推導 26
3.2 系統判別模擬結果 32
第四章 實驗設備與方法 36
4.1 實驗平台 36
4.2 實驗方法 52
4.3 實驗數據不準確度分析 55
4.4 實驗結果 56
第五章 結論與未來展望 68
參考文獻 70
附錄A 系統判別結果 78
附錄B 暫態燃油擾動數據 84
符號彙編 87
著作發表 92
[1]交通部全球資訊網,「機動車輛登記數」, http://www.motc.gov.tw/mocwebGIP/wSite/lp?ctNode=162&CtUnit=94&BaseDSD=16&mp=1
[2]環保署空氣品質保護及噪音管制處,「低污染車輛推廣」,http://www.epa.gov.tw/F/
[3]廖俊性、吳浴沂,「機車排氣污染法規與因應對策」,燃燒季刊,2007。
[4]巫金台等,「機車第五期排放標準及低污染機車技術評估」,環保署委託工研院機械所計畫期末報告,2005。
[5]行政院環境保護署機車定期檢驗資訊管理系統,http://www.motorim.org.tw/Report/Report_List.htm
[6]吳浴沂,「機車排氣污染管制與未來技術策略」,機械工業雜誌,271期,2005。
[7]J. B. Heywood, “Internal Combustion Engine Fundamentals,” McGraw-Hill Publishing Company, 1988.
[8]Z. Ye, “A Simple Linear Approach for Transient Fuel Control,” SAE Paper No. 2003-01-0360.
[9]E. Hendricks, J. Poulsen, M. B. Olsen, P. B. Jensen, M. Fons, and C. Jepsen, “Alternative Observers for SI Engine Air/Fuel Ratio Control,” Proceedings of the 35th IEEE Conference on Decision and Control, Vol. 3, 1996, pp. 2806-2811.
[10]D. Blomqvist, S. Byttner, U. Holmberg, and T. Rögnvaldsson, “Different Strategies for Transient Control of the Air-Fuel Ratio in a SI Engine,” SAE Paper No. 2000-01-2835.
[11]A. D. Gaeta, S. Santini, L. Glielmo, F. D. Cristofaro, C. D. Giuseppe, and A. Caraceni, “An Algorithm for the Calibration of Wall-Wetting Model Parameters,” SAE Paper No. 2003-01-1054.
[12]C. Alippi, C. D. Russis, and V. Piuri, “A Fine Control of The Air-to-Fuel Ratio With Recurrent Neural Networks,” IEEE Instrumentation and Measurement Technology Conference, Vol. 2, 1988, pp. 924-929.
[13]P. P. Stewart, “Development of a Transient Air Fuel Controller for an Internal Combustion Engine,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, 1995, pp. 3766-3771.
[14]W. Xu, Vincent, V. W. K. Yuen, and J. K. Mills, “Application of Nonlinear Transformations to A/F Ratio and Speed Control in an IC Engine,” SAE Paper No. 1999-01-0858.
[15]M. Sunwoo, and P. Yoon, “An adaptive sliding mode controller for air–fuel ratio control of spark ignition engines,” Proceeding of the Institution of Mechanical Engineers, part D: journal of Automobile Engineering, Vol. 215, 2001, pp. 305-315.
[16]J. K. Pieper, and R. Mehrotra, “Air/Fuel Ratio Control Using Sliding Mode Methods,” Proceedings of the American Control Conference, Vol. 2, 1999, pp. 1027-1031.
[17]A. Bastian, “Modeling fuel injection control maps using fuzzy logic,” Proceedings of the Third IEEE Conference on Fuzzy Systems, IEEE World Congress on Computational Intelligence, Vol. 2, 1994, pp. 740-743.
[18]R. C. Turin, and H. P. Geering, “Model-Based Adaptive Fuel Control in an SI engine,” SAE Paper No. 940374, 1994.
[19]M. R. Simons, M. Locatelli, C. H. Onder, and H. P. Geering, “A Nonlinear Wall-Wetting Model for the Complete Operating Region of a Sequential Fuel Injected SI Engine,” SAE Paper No. 2000-01-1260.
[20]C. F. Aquino, “Transient A/F Control Characteristics of the 5 Liter Central Fuel Injection Engine,” SAE Paper No. 810494, 1981.
[21]M. Locatelli, C. H. Onder, and H. P. Geering, “An Easily Tunable Wall-Wetting Model for PFI Engines,” SAE Paper No. 2004-01-1461.
[22]F. V. Tinaut, A. Melgar, and B. Giménez, “A Model of Atomization of a Transient Evaporative Spray,” SAE Paper No. 1999-01-0913.
[23]J. J. Moskawa, “Estimation of dynamic fuel parameter in automotive engines,” Transactions of ASME, Journal of Dynamic Systems, Measurement and Control, 1994, Vol. 116, pp. 774-780.
[24]N. Ladommatos, and D. W. Rose, “Results of a Computer Model of Droplet Thermodynamic and Dynamic Behaviour in the Port of a Port-Injected Engine,” SAE Paper No. 960468, 1996.
[25]R. C. Turin, E. G. B. Casartelli, and H. P. Geering, “A New Model for Fuel Supply Dynamics in an SI Engine,” SAE Paper No. 940208, 1994.
[26]Nagaoka, K. Ohsawa, B. Crary, T. Yamada, S. Sugiura, and N. Imatake, “Numerical Anallysis of Fuel Behavior in a Port-Injection Gasoline Engine,” SAE Paper No. 970878, 1997.
[27]Y. Takahashi, Y. Nakase, and H. Ichinose, “Analysis of the Fuel Liquid Film Thickness of a Port Fuel Injection Engine,” SAE Paper No. 2006-01-1051.
[28]T. Johnen, and M. Haug, “Spray Formation Observation and Fuel Film Development Measurements in the Intake of a Spark Ignition Engine,” SAE Paper No. 950511, 1995.
[29]J. Senda, M. Ohnishi, T. Takahashi, H. Fujimoto, A. Utsunomiya, and M. Wakatabe, “Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine,” SAE Paper No. 1999-01-0798, 1999.
[30]葉心丞,「機車噴油引擎噴霧觀測與動態油膜模式建立」,碩士論文,國立台北科技大學車輛工程研究所,台北,2007。
[31]S. D. Hires, and M. T. Overington, “Transient Mixture Strength Excursions – An Investigation of their Cause and the Development of a Constant Mixture Strength Fuel Strategy,” SAE Paper No. 810495, 1992.
[32]J. J. Batteh, E. W. Curtis, and M. Fried, “Analytical Assessment of Simplified Transient Fuel Tests for Vehicle Transient Fuel Compensation,” SAE Paper No. 2005-01-3894.
[33]N. Cavina, G. Minelli, and M. Ceccarani, “Implementation of Fuel Film Compensation Algorithm on the Lamborghini Diablo 6.0 Engine,” SAE Paper No. 2001-01-0609.
[34]E. W. Curtis, C. F. Aquino, D. K. Trumpy, and G. C. Davis, “A New Port and Cylinder Wall Wetting Model to Predict Transient Air/Fuel Excursions in a Port Fuel Injected Engine,” SAE Paper No. 961186, 1996.
[35]H. Tanabe, M. Torigoshi, and S. Sakoda, “Fuel Behavior Model-Based Injection Control for Motorcycle Port-Injection Gasoline Engines,” SAE Paper No. 2007-32-0045.
[36]C. He, and N. G. Chalhoub, “On-Line Identification of Model Parameters for a Liquid Fuel Film in the Induction System of a Gasoline Engine,” Proceeding of ASME, Dynamic Systems and Control Division, Vol. 64, 1998, pp. 737-742.
[37]M. R. Simons, E. Shafai, and H. P. Geering, “On-Line Identification Scheme for Various Wall-Wetting Models,” SAE Paper No. 980793, 1998.
[38]C. H. Onder, C. A. Roduner, M. R. Simons and H. P. Geering, “Wall-Wetting Parameters Over the Operating Region of a Sequential Fuel-Injected SI Engine,” SAE Paper No. 980792, 1998.
[39]J. C. Zavala, D. Gunther, P. Sanketi, M. Wilcutts, and K. Hedrick, “Fuel Dynamics Model for Engine Cold start,” ASME 2006 International Mechanical Engineering Congress and Exposition, Chicago, Illinois.
[40]R. Cipollone, C. Villante, and M. Sughayyer, “On–line Identification of Fuel Dynamics for a Model-based Injection Control,” SAE Paper No. 2005-01-0064.
[41]M. C. Bourke, L. W. Evers, “Fuel Film Dynamics in the Intake Port of a Fuel Injected Engine” SAE Paper No. 940446, 1994.
[42]吳浴沂、吳英煌,「油膜動態對於引擎效率影響之探討」,第十屆車輛工程學術研討會,台北,2005。
[43]謝豐吉,「機車引擎模型與控制」,博士論文,國立台北科技大學車輛工程研究所,台北,2007。
[44]W. Hentschel, A. Grote, O. Langer, “Measurement of Wall Film Thickness in the Intake Manifold of a Standard Production SI Engine by a Spectroscopic Technique,” SAE Paper No. 972832, 1997.
[45]P. J. Shayler, Y. C. Teo, and A. Scarisbrick, “Fuel Transport Characteristics of Spark Ignition Engines for Transient Fuel Compensation,” SAE Paper No. 950067, 1995.
[46]W. H. Zhang, S. Z. Meng, and S. P. Guo, “Research on the Transportation Characters of the Fuel Film in Manifold of Spark Ignition Engines” Journal of Tsinghua University, Vol.37, 1997, pp.53-56.
[47]G. Almkvist, S. Eriksson, “A Study of Air to Fuel Transient Response and Compensation with Different Fuels” SAE Paper No. 941931, 1994.
[48]F. A. Jehlik, and J. B. Ghandhi, “Investigation of Intake Port Fuel Films in a Small Utility Air-Cooled Engine,” SAE Paper No. 2001-01-1788.
[49]J. McGee, E. Curtis, S. Russ and G. Lavoie, “The Effects of Port Fuel Injection Timing and Targeting on Fuel Preparation Relative to a Pre-Vaporized System,” SAE Paper No. 2000-01-2834.
[50]H. Cho, K. Min, S. H. Hwang, and J. H. Lee, “Prediction of air-fuel ratio in transient conditions using a model of liquid fuel behavior in the intake port of a spark-ignition engine,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 214, 2000, pp. 731-740.
[51]R. Meyer, and J. B. Heywood, “Effect of Engine and Fuel Variables on Liquid Fuel Transport into the Cylinder in Port-Injected SI Engines,” SAE Paper No. 1999-01-0563.
[52]林茂霖、張育豪、劉旭光,「機車進氣歧管內燃油噴霧特性之研究」,第十八屆燃燒學會,雲林,2008。
[53]Y. Y. Wu, B. C. Chen, and F. C. Hsieh, “Modulization of Four-Stroke Single-Cylinder Spark-Ignition Air-Cooled Engine Models,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering , Vol. 221, No. 8, 2007, pp. 1015-1026.
[54]J. J. Moskwa and J. K. Hedrick, “Modeling and Validation of Automotive Engines for Control Algorithm Development,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 114, 1992, pp. 278-285.
[55]Y. Y. Wu, Y. Shiao, and B. C. Chen, “Motorcycle Engine Modeling for Real Time Control,” International Symposium on Advanced Vehicle Control, Hiroshima, Japan, 2002.
[56]C. F. Taylor, “The Internal Combustion Engine in Theory and Practice,” Vol. 1, M.I.T. Press, Cambridge, 1966, pp. 266-290.
[57]A. C. Alkidas and J. P. Myers, “Transient Heat-Flux Measurements in the Combustion Chamber of a Spark-Ignition Engine, ASME Journal of Heat Transfer, Vol.104, 1982, pp.62-67.
[58]G. F. Hohenberg, “Advanced Approaches for Heat Transfer Calculations,” Diesel Engine Thermal Loading, SAE SP-449, 1979, pp. 61-79.
[59]J. L. Lumley, “Engines an Introduction,” Cambridge University Press, 1999, pp. 95-117.
[60]T. Oguri, “On the Coefficient of Heat Transfer Between Gases and Cylinder Walls of the Spark-Ignition Engine,” Bulletin of the JSME, Vol. 3, No. 11, 1960, pp. 363-369.
[61]W. J. D. Annand, “Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines,” Proceedings of the Institution of Mechanical Engineers, Vol. 177, No. 36, 1963, pp.973-990.
[62]Y. Y. Wu, B. C. Chen, and F. C. Hsieh, “Heat Transfer Model for Small-Scale Air-Cooled Spark Ignition Four-Stroke Engines,” International Journal of Heat and Mass Transfer, Vol. 49, No.21-22, 2006, pp.3895-3905.
[63]W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, “Handbook of Heat Transfer 3rd ed,” New York, McGraw-Hill, 1998.
[64]M. F. J. Brunt, H. Rai, and L. A. Emtage, “The Calculation of Heat Release Energy from Engine Cylinder Pressure Data,” SAE Paper No. 981052, 1998.
[65]G. Woschni, and J. Fieger, “Determination of Local Heat Transfer Coefficients at the Piston of a High Speed Diesel Engine by Evaluation of Measured Temperature Distribution,” SAE Paper No. 790834, 1979.
[66]S.J. Yoo and E.S. Kim, “A Study of In-Cylinder Local Heat Transfer Characteristic of a Spark Ignition Engine,” SAE Paper No. 931981, 1993.
[67]S. Drakunov, G. Rizzoni, and Y.-Y. Wang, “On-Line Estimation of Indicated Torque in IC Engines Using Nonlinear Observers,” SAE Paper No. 950840, 1995.
[68]D. A. Kouremenos, C. D. Rakopoulos, D. T. Hountalas, and T. K. Zannis, “Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures,” SAE Paper No. 2001-01-0333.
[69]E. Brusa, C. Delprete, and G. Genta, “Torsional vibration of crankshafts: Effects of non-constant moments of inertia,” Journal of Sound and Vibration, Vol. 205, No. 2, 1997, pp. 135-150.
[70]K. J. Astrom, and B. Wittenmark, “Adaptive Control,” Addison-Wesley, Massachusetts, 1989.
[71]楊鴻進,「油滴衝擊之實驗研究及現象分析」,碩士論文,國立台灣大學機械工程研究所,台北,2003年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top