跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江建銘
研究生(外文):Chien-Ming Chiang
論文名稱:合成噻吩衍生物並應用於有機高分子太陽能電池之特性分析
論文名稱(外文):Synthesis and Application of Poly thiophene Derivatives in Organic Solar cells
指導教授:張淑美張淑美引用關係
指導教授(外文):SHU-MEI JHANG
口試委員:陳俊維王立義
口試委員(外文):JYUN-WEI CHENLI-YI WANG
口試日期:2008-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:136
中文關鍵詞:窄能係共聚物太陽能電池元件
外文關鍵詞:Poly thiophenelow band gap polymerphotovoltaic devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本次研究為合成塞吩之衍生物,並分為以下2個主軸,(1) 藉由改變賽吩3號位置之烷基鏈,合成出聚3己基塞吩(P3HT), 聚3辛基塞吩(P3OT), 聚3癸基塞吩(P3DT), 聚3丑基塞吩(P3DDT);(2) 利用Donor-Acceptor 之觀念,以塞吩為Donor,苯歐唑之衍生物為Acceptor,聚合出窄能係共聚物,並探討高分子之紫外光-可見光吸收光譜,光致發光螢光光譜,利用循環伏安計計算出最高填滿及最低未填滿能階,並將高分子製作成太陽能電池元件,利用原子力顯微鏡觀察薄膜表面,及量測其電流-電壓曲線計算出元件之效率。
The research project of this thesis is mainly the synthesis of poly thiophene and its application on polymer solar cells. In the synthesis section, we divided into two topics to discuss. For the first topic, we changed the alkyl group of thiophene 3 position to synthetize 4 different poly(3-alkylthiophene)(P3AT) with poly(3-hexyl thiophene) (P3HT), poly(3-octyl thiophene) (P3OT), poly(3-decanal thiophene) (P3DT),and Poly (3- dodecylthiophene-2,5-diyl) (P3DDT). For the second topic, we used the donor-acceptor concept with thiophene as the donor and benzo[c][1,2,5]thiadiazole, 2-phenylbenzo[d]thiazole, 2-(benzo[d]thiazol-2-yl)phenol as the acceptor to synthetize the low band gap polymer. Finally discussed the UV-vis spectrum, photoluminescence, calculated the HOMO, LUMO by cyclic voltammetry, and fabricated the photovoltaic devices to discuss the I-V curve.
ABSTRACT (Chinese) i
ABSTRACT (English) ii
ACKNOWLEDGEMRNTS iii
TABLE OF CONTENT iv
LIST OF FIGURES vi
Chapter 1 INTRODUCTION
1.1 Guide of this thesis 4
References to Chapter 1 5

Chapter 2 A STAGE OF THE ART FOR SOLAR CELLS
Photovoltaic technologies - A state-of-the-art
2.1 Silicon 7
2.1.1 Monocrystalline silicon solar cell 8
2.1.2 Muticrystalline silicon solar cell 9
2.1.3 Thin film transfer silicon solar cell 10
2.1.4 Amorphous silicon 11
2.2 III-V cells 13
2.3 Polycrystalline thin film 15
2.4 Multijunction cells 17
2.5 Dye sensitized solar cells 18
2.5.1 Basic principles 18
References to Chapter 2 22

Chapter 3 ORGANIC POLYMER SOLAR CELLS
3.1 Prolog 23
3.2 Organic solar sell materials 23
3.3 Basic working principles of polymer solar cells 25
3.4 Organic photovoltaic device architectures 28
3.4.1 Single layer devices 28
3.4.2 Bilayer devices 29
3.4.3 Bulk heterojunction devices 30
3.5 Characterization of a solar cell device 33
3.6 Some influence on polymer solar cell 34
References to Chapter 3 39

Chapter 4 POLYMER DESIGN & SYNTHETIZE
4.1 Study method 41
4.1.1 Ultimate power conversion efficiencies 41
4.1.2 Optimum alignment of energy levels 42
4.1.3 Design considerations for low band gap polymer 44
4.2 Polymer design 46
References to Chapter 4 53

Chapter 5 DATA ANALYSIS AND DISCUSS
5.1 Synthesis method and analysis 54
5.2 GPC 58
5.3 UV-vis and PL 61
5.4 CV 66
5.5 Photovoltaic device 69
5.5.1 ITO substrate preparation 69
5.5.2 Preparation of active layer 69
5.5.3 Device fabricate 70
5.5.4 I-V curve analysis 71
5.6 Conclusion 77

Chapter 6 EXPERIMENT SECTION
6.1 Experiment instruments 80
6.2 Monomer synthesis step 82
6.3 Polymerization 104

Chapter 7 APPENDIX
chapter 1
[1] Smalley, R. E.; MRS Bull. 2005, 30, 412
[2] www.ipcc.ch
[3] Dimitrakopoulos, C.D.; Mascaro, D.J.; IBM J Res Dev. 2001, 45, 11
[4] Hoppe, H,; Arnold N.; Meissner, D.; Sariciftci, N.S.; Sol Energy Mater Sol Cells. 2003, 80, 105
[5] Hoppe, H.; Sariciftci, N.S.; J Mater Res. 2004, 19, 1924
[6] Montanari, I.; Nogueira, A.F.; Nelson, J.; Durrant, J.R.; Winder C.; Loi, M.A.;
Sariciftci, N.S.; Appl Phys Lett. 2001, 81, 3001
[7] Nogueira ,A.F.; Montari, I.; Nelson,J.; Durrant,J.R.; Winder,C.; Sariciftci, N.S.; Brabec,C.; J Phys Chem B. 2003, 107, 1567
[8] Nelson, J.; Phys Rev B. 2003 67, 155209
[9] Sirringhaus ,H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Nature 1999, 401, 685
[10] Singh, T.B.; Marjanovic, N.; Matt, G.J.; Gunes, S.; Sariciftci, N.S.; Montaigne, R.A.; Andreev, A.; Sitter, H.; Schwodiauer, R.; Bauer, S.; Org Electron. 2004 6, 105
chapter 2
[1] N. Herve, Alternative Redox System for The Dye-Sensitized Solar Cell, Ph.D. Thesis, 2004
[2] Wang, A.; Zhao, J.; Wenham, S. R.; Green, M. A. Prog. Photovolt.: Res. & Appl. 1996,4, 55.
[3] Brendel, R.; Scholten, D. Appl. Phys. A. 1999, 69, 201.
[4] Brendel, R.; Auer, R.; Artmann, H. Prog. Photovolt.: Res. & Appl. 2001, 9, 217.
[5] Nishida, S.; Nakagawa, K.; Iwane, M.; Iwasaki, Y.; Ukiyo, N.; Mizutani, M.; Shoji, T.Sol. Energy Mater. 2001, 65, 525.
[6] Tayanaka, H.; Yamauchi, K.; Matsushita, T. Thin-film Crystalline Silicon Solar CellsObtained by Separation of a Porous Silicon Sacrificial Layer; Proc. 2nd World Conf. onPhotovolt. Solar Energy Conversion. 1998, 1272. Ispra.
[7] Weber, K. J.; Catchpole, K.; Blakers, A. W. Crystal Growth. 1998, 186, 369.
[8] Rinke, T. J.; Bergmann, R. B.; Werner, J. H. Appl. Phys. A. 1999, 68, 705.
[9] Södergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S. E. J Phys Chem-Us. 1994, 98, 5552.
[10] Cao, F.; Oskam, G.; Meyer, G. J.; Searson, P. C. J. Phys. Chem. B. 1996, 100, 17021.
[11] Schwarzburg, K.; Willig, F. J. Phys. Chem. B. 1999, 103, 5743.
[12] Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. M.; Perera, V. P. S. Chem. Comm.1999, 15, 15.
[13] Sayama, K.; Suguhara, H.; Arakawa, H. Chem. Mater. 1998, 10, 3825.
chapter 3
[1] Halls, J.J.M.; Pichler, K.; Friend, R.H.; Moratti, S.C.; Holmes, A.B. Appl Phys Lett. 1996, 68, 3120
[2] Knupfer, M. Appl Phys A. 2003, 77, 623
[3] Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. Science. 1992, 258, 1474
[4] Brabec, C.J.; Zerza, G.; Cerullo, G.; Silvestri, S.D.; Luzzati, S.; Hummelen J.C.; Sariciftci, S. Chem Phys Lett. 2001, 340, 232
[5] Nelson, J. Phys Rev B. 2003, 67, 155209
[6] Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N.S.; Adv Funct Mater. 2004, 14, 1005
[7] Morteani, A.C.; Sreearunothai, P.; Herz, L.M.; Phillips, R.T.; Friend, R.H.; Silva, C. Phys Rev Lett. 2004, 92, 247240
[8] Mihailetchi, V.D.; Koster, L.J.A.; Hummelen, J.C.; Blom, P.W.M. Phys Rev Lett . 2004, 93, 216601
[9] Koster, L.J.A.; Smiths, E.C.P.; Mihailetchi, V.D.; Blom, P.W.M. Phys Rev B. 2005, 72, 085205
[10] Hoppe, H.; Glatzel, T.; Niggemann, M.; Hinsch, A.; Lux-Steiner, M.C.; Sariciftci, N.S. Nano Lett, 2005, 5, 269
[11] Tang, C.W. Appl Phys Lett, 1986, 48, 183
[12] Pettersson, L.A.A.; Roman, L.S.; Inganas, O. J Appl Phys, 1999, 86, 487
[13] Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Science, 1995, 270, 1789
[14] Halls, J.J.M.; Walsh, C.A.; Greenham, N.C.; Marseglia, E.A.; Friend, R.H.; Moratti S.C.; Holmes, A.B. Nature .1995, 376, 498
[15] Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
[16] Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A.J. Adv Funct Mater. 2005, 15, 1617
[17] Moons, E. J Phys CondensMatter. 2002, 14, 12235
[18] Yang, X.; van Duren, J.K.J.; Janssen, R.A.J.; Michels, M.A.J.; Loos, J. Macromolecules. 2004, 37, 2151
[19] Coakley, K.M.; McGehee, M.D. Appl Phys Lett. 2003, 83, 3380
[20] Heiser, T.; Adamopoulos, G.; Brinkmann, M.; Giovanella, U.; Ould-Saad, S.; Brochon, C.van deWetering, K.; Hadziioannou, G. Thin Solid Films. 2006, 219, 511
[21] Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.; Lux-Steiner, M.C.; Sariciftci, N.S. Thin Solid Films. 2006, 587, 511
[22] Kim, J.Y.; Kim,S. H.; Lee, H.H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A.J. Adv Mater. 2006, 18, 572
[23] Brabec, C.J.; Shaheen, S.E.; Winder, C.; Sariciftci, N.S.; Denk, P. Appl Phys Lett. 2002, 80, 1288
chapter 4
[1] Wang, A.; Zhao, J.; Wenham, S. R.; Green, M. A. Prog. Photovolt.: Res. & Appl. 1996,4, 55.
[2] Brendel, R.; Scholten, D. Appl. Phys. A. 1999, 69, 201.
[3] Brendel, R.; Auer, R.; Artmann, H. Prog. Photovolt.: Res. & Appl. 2001, 9, 217.
[4] Nishida, S.; Nakagawa, K.; Iwane, M.; Iwasaki, Y.; Ukiyo, N.; Mizutani, M.; Shoji, T.Sol. Energy Mater. 2001, 65, 525.
[5] Tayanaka, H.; Yamauchi, K.; Matsushita, T. Thin-film Crystalline Silicon Solar CellsObtained by Separation of a Porous Silicon Sacrificial Layer; Proc. 2nd World Conf. onPhotovolt. Solar Energy Conversion. 1998, 1272. Ispra.
[6] Weber, K. J.; Catchpole, K.; Blakers, A. W. Crystal Growth. 1998, 186, 369.
[7] Rinke, T. J.; Bergmann, R. B.; Werner, J. H. Appl. Phys. A. 1999, 68, 705.
[8] Södergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S. E. J Phys Chem-Us. 1994, 98, 5552.
[9] Cao, F.; Oskam, G.; Meyer, G. J.; Searson, P. C. J. Phys. Chem. B. 1996, 100, 17021.
[10] Schwarzburg, K.; Willig, F. J. Phys. Chem. B. 1999, 103, 5743.
[11] Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. M.; Perera, V. P. S. Chem. Comm.1999, 15, 15.
[12] Sayama, K.; Suguhara, H.; Arakawa, H. Chem. Mater. 1998, 10, 3825.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊