跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林欽楷
研究生(外文):Chin-Kai Lin
論文名稱:二氧化鈦奈米粒的製備、改質與應用:從光催化反應到染料敏化太陽能電池分析
論文名稱(外文):Preparation, Modification, and Application of TiO2 Nanoparticles: from Photocatalysis to Dye-sensitized solar cell
指導教授:蘇昭瑾
口試委員:簡淑華吳春桂林景泉
口試日期:2008-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:106
中文關鍵詞:二氧化鈦銳鈦礦光催化水熱銀/二氧化鈦奈米薄膜亞甲基藍染料敏化太陽能電池
外文關鍵詞:Titanium dioxideanatasephotocatalytic degradationhydrothermalAg/TiO2 thin filmmethylene bluedye-sensitized solar cell
相關次數:
  • 被引用被引用:5
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文研究方向有二,一為將自製的二氧化鈦溶膠製成穿透性良好的薄膜以探討其光催化效果。另一為將自製的二氧化鈦溶膠烘乾,再進一步製成二氧化鈦漿料,並應用至染料敏化太陽能電池的工作電極上,探討其光電轉換效果。
第一部份,利用立體障礙較大的正四丁基氧化鈦(Ti[n(C4H9O)]4)為前驅物,利用CH3COOH催化產生的混合膠體,經200 oC水熱過程產生二氧化鈦溶膠,進一步以浸漬拉伸的方式將它轉鍍於玻璃基板上並以550 oC溫度乾燥成膜。單次鍍膜可得銳鈦礦相(anatase)且具良好穿透性的二氧化鈦薄膜。接著以硝酸銀做為銀源,利用光催化沉積法使銀沉積於薄膜表面形成銀/二氧化鈦薄膜。利用掃描式電子顯微鏡(SEM)觀察其薄膜厚度及外觀形狀,發現單次鍍膜可得厚度約為80奈米,並且可明顯的發現銀粒沉積於二氧化鈦上;利用能量散佈光譜(EDS)分析元素組成;以歐傑電子光譜(AES, Auger mapping)分析奈米銀粒在二氧化鈦薄膜表面上的分佈型態;以X光繞射儀(XRD)分析粉體的結晶相發現經過550oC溫度乾燥成膜。單次鍍膜可得銳鈦礦相(anatase)且具良好穿透性的二氧化鈦薄膜。接著以硝酸銀做為銀源,利用光催化沉積法使銀沉積於薄膜表面形成銀/二氧化鈦薄膜。利用掃描式電子顯微鏡(SEM)觀察其薄膜厚度及外觀形狀,發現單次鍍膜可得厚度約為80奈米,並且可明顯的發現銀粒沉積於二氧化鈦上;利用能量散佈光譜(EDS)分析元素組成;以歐傑電子光譜(AES, Auger mapping)分析奈米銀粒在二氧化鈦薄膜表面上的分佈型態;以X光繞射儀(XRD)分析粉體的結晶相發現經過550oC煅燒後並沒有相轉換;以氮氣吸附儀(BET)量測粉體的表面積大小。最後以亞甲基藍(methylene blue)之光裂解反應作為二氧化鈦光催化活性分析的指標,比較純二氧化鈦薄膜和銀/二氧化鈦薄膜光催化活性上的差異,從結果發現由於二氧化鈦含量太少且因為銀粒對光線的遮蔽導致其催化效果有限。
第二部份,是將水熱後所生成的7%二氧化鈦溶膠以150oC的溫度將溶液中的有機溶劑趕走,製成12%二氧化鈦溶膠,並以刮塗法的方式將二氧化鈦溶膠均勻的塗佈在導電玻璃上,以450oC煅燒製備成二氧化鈦光陽極。另外也將水熱後的二氧化鈦溶膠烘乾,加入乙醯丙酮、聚乙烯二醇辛基苯酚醚、聚乙二醇、二次去離子水調製成二氧化鈦漿料,同樣以上述方式製成光陽極。將光陽極浸泡於染料(N3)中,使染料吸附在電極上,相對電極是以濺鍍法製成的鉑電極,加入電解液(I3-/I-)後,組裝成電池元件,以模擬太陽光AM 1.5,光強度為100 mW/cm2的光源照射,進行電池的光電轉換效率測試。發現,使用膠體溶液製成的工作電極無法精準的控制膜厚,單次塗膜雖然厚度均勻,但是厚度只達到1~2 um,而多次塗膜後容易造成龜裂且薄膜厚度不均勻而導致光電轉換效果不好。而利用漿料所製成的光電極效率最高可達6.61%,且電極最佳厚度約為17~24 um。
This thesis was divided to two parts. In the first part, I will discuss the photocatalytic activity of thin film by using self-prepared TiO2 sol. In the second part, I will discuss the preparation of TiO2-base paste to apply in electrode of dye-sensitized solar cell (DSSC).
Part1. Thin films of nanocrystalline TiO2 were deposited onto glass substrates using a hydrothermal process. The initial TiO2 sols were prepared by mixing the precursor, titanium (IV) n-butoxide with acetic acid (CH3COOH) and mechanically stirring until a translucent sol was obtained, followed by hydrothermal treatment at 200 °C. The glass substrates were dip-coated and calcined at 550 °C to result the TiO2 films. The Ag was deposited on TiO2 by photoreduction of AgNO3. The resultant Ag/TiO2 was characterized by XRD, SEM, AES and EDS. The photocatalytic activity of TiO2 and Ag/TiO2 thin film was tested in the reaction of methylene blue (MB) photodegradation in aqueous solution. According to XRD, after calcined at 550 °C and the Ag deposited on TiO2 were not affect crystal phase. The SEM micrographs show that Ag had deposited on the TiO2. But the photocatalytic activity does not have obvious difference because the amount of TiO2 is too small.
Part2. The TiO2 sols was dried to form 12% TiO2 sols and anatase TiO2 (a-TiO2) powders. The a-TiO2 paste were prepared by adding a-TiO2 powder, acetylacetone (acac), triton X-100 and polyethylene glycol (PEG) into water. The TiO2 films were deposited with either 12% TiO2 sols or a-TiO2 paste using the doctor-blade technique on the substrate, followed by heat treatment at 450 oC. The TiO2 electrodes were immersed in N3 dye. Counter electrode is platinum by sputter. Electrolyte was dropped and simple device was assembled. Solar energy conversion efficiency of device was measured by simulated AM1.5 sunlight (100 mW/cm2). It was found that conversion efficiency of a-TiO2-base DSSC can achieve 6.61%.
中文摘要...................................................I
ABSTRACT.................................................III
誌謝.......................................................V
目錄......................................................VI
表目錄....................................................IX
圖目錄.....................................................X
第一章 緒論...............................................1
1.1 前言...................................................1
1.2 二氧化鈦光觸媒與光催化.................................2
1.2.1二氧化鈦的簡介........................................2
1.2.2二氧化鈦的應用........................................5
1.2.3 二氧化鈦催化反應原理.................................6
1.2.4 水熱法製備二氧化鈦...................................8
1.2.5 銀/二氧化鈦..........................................9
1.2.6 亞甲基藍(Methylene blue)的光催化降解................10
1.3 太陽能電池............................................13
1.3.1 電池的種類與發展....................................13
1.3.2 染料敏化太陽能電池 (dye-sensitized solar cell, DSSC).....................................................14
1.3.3 染料敏化太陽能電池的組成............................15
1.3.4 染料敏化太陽能電池的工作原理........................18
1.4 研究動機..............................................20
第二章 實驗方法..........................................21
2.1實驗藥品及實驗儀器.....................................21
2.2二氧化鈦溶膠的製備.....................................23
2.2.1 二氧化鈦奈米薄膜的製備..............................24
2.2.2 玻璃基板的清洗與選擇................................25
2.3光催化沉積法製備銀/二氧化鈦奈米薄膜....................25
2.4二氧化鈦奈米薄膜的光催化實驗...........................27
2.4.1 背景實驗............................................28
2.4.2 奈米薄膜對亞甲基藍的光催化實驗......................30
2.5 染料敏化太陽能電池元件的製備與組裝....................31
2.5.1 利用二氧化鈦粉末製備工作電極........................31
2.5.2 利用溶膠水熱法製備工作電極..........................34
2.5.3 電池元件的組裝與測試................................35
2.6 二氧化鈦奈米薄膜性質分析與鑑定........................37
2.6.1 穿透式電子顯微鏡(TEM)...............................37
2.6.2 X光粉末繞射分析(XRD)................................38
2.6.3 氮氣等溫吸附-脫附分析...............................39
2.6.4能量散佈儀(EDS)......................................43
2.6.5 歐傑電子影像能譜分析(AES)...........................44
2.6.6紫外光/可見光吸收光譜儀(UV/Vis).....................46
2.7 太陽能電池效果測試....................................48
2.7.1 電壓-電流特性曲線(I-V curve)量測....................48
2.7.2 入射單色光子-電子轉換效率(IPCE).....................50
2.7.3 染料吸附量測試......................................51
第三章 結果與討論........................................53
3.1 溶膠-水熱法製備二氧化鈦奈米薄膜性質分析...............53
3.1.1 X光粉末繞射儀(XRD)分析..............................53
3.1.2 掃描式電子顯微鏡(SEM)分析...........................55
3.1.3 能量散佈分析儀(EDS).................................57
3.2 光催化沈積法製備銀/二氧化鈦薄膜之性質分析.............58
3.2.1 X光粉末繞射儀(XRD)分析..............................58
3.2.2 掃描式電子顯微鏡(SEM)分析...........................59
3.2.3 能量散佈分析儀(EDS).................................60
3.2.4 歐傑電子光譜(AES)...................................61
3.3 亞甲基藍的光催化實驗..................................63
3.3.1 二氧化鈦奈米薄膜與亞甲基藍的背景實驗結果............63
3.3.2 亞甲基藍的光催化實驗結果............................65
3.4 二氧化鈦粉末製備成工作電極之性質分析..................68
3.4.1 X光粉末繞射儀(XRD)分析..............................68
3.4.2 穿透式電子顯微鏡(TEM)分析...........................71
3.4.3 氮氣等溫吸附-脫附分析...............................73
3.4.4 掃描式電子顯微鏡(SEM)分析...........................77
3.4.5 紫外/可見光(UV/Vis)吸收光譜分析.....................80
3.4.6 電壓-電流特性曲線(I-V curve)量測分析................82
3.4.7 入射單色光子-電子轉換效率(IPCE)分析結果.............85
3.5 利用二氧化鈦膠體溶液製備工作電極之性質分析............86
3.5.1 X光粉末繞射儀(XRD)分析..............................86
3.5.2 掃描式電子顯微鏡(SEM)分析...........................87
3.5.3 紫外/可見光(UV/Vis)吸收光譜分析.....................91
3.5.4 電壓-電流特性曲線(I-V curve)量測分析................92
3.5.5 二氧化鈦吸附N3染料的紅外線光譜分析..................96
第四章 結論..............................................98
參考文獻.................................................101
附錄A:aTiO2的熱重分析圖(TGA)............................106
[1] P. Robert, International Energy Agency World Energy Outlook (2002).
[2] P. Robert, International Energy Agency Renewables in Global Energy Supply An IEA Fact Sheet (2002).
[3] P. Robert, Brittish Petroleum Statistical Review of World Energy (2003).
[4] M. A. Fox, M. T. Dulay, Chem. Rev. 93 (1993) 341.
[5] J. M. Herrmann, Catal. Today 53 (1999) 115.
[6] M. Grätzel, Nature 414 (2001) 338.
[7] C.-G. Wu, L.-F. Tzeng, Y.-T. Kuo, C. H. Shu, Appl. Catal. A 226 (2002) 199.
[8] A. D. Paola, G. Marci, L. Palmisano, M. Schiavello, M. K. Uosaki, S. Ikeda, B. Ohtani, J. Phys. Chem. B 106 (2002) 637.
[9] I.-H. Tseng, W.-C. Chang, J. C. S. Wu, Appl. Catal. B 37 (2002) 37.
[10] G. Colon, M. C. Hidalgo, J. A. Navio, Appl. Catal. A 231 (2002) 185.
[11] S. Goeringer, C. R. Chenthamarakshan, K. Rajeshwar, Electrochem. Commun. 3 (2001) 290.
[12] U. Diebold, Surf. sci. Reprot 48 (2003) 53.
[13] A. L. Linsebigler, G. Lu, J. J. T. Yates, Chem. Rev. 95 (1995) 735.
[14] M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, J. Phys. Chem. B 106 (2002) 10674.
[15] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Appl. Catal. B 39 (2002) 75.
[16] R. W. Matthews, J. Phys. Chem. 91 (1987) 3328.
[17] A. Sclafani, J. M. Herrmann, J. Phys. Chem. 100 (1996) 13655.
[18] J. A. Navio, G. Colon, M. Trillas, J. Peral, X. Domenech, J. J. Testa, J. Padron, D. Rodriguez, M. I. Litter, Appl. Catal. B 16 (1998) 187.
[19] L. B. Khalil, W. E. Mourad, M. W. Rophael, Appl. Catal. B 17 (1998) 267.
[20] B. O. Regan, M. Grätzel, Nature 353 (1991) 737.
[21] V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, J. Photochem. Photobiol., A 148 (2002) 233.
[22] H. E. Chao, Y. U. Yun, H. U. Xingfang, A. Larbot, J. Eur. Ceram. Soc. 23 (2003) 1457.
[23] J. Zhu, W. Zheng, B. He, J. Zhang, J. Mol. Catal. A: Chem. 216 (2004) 35.
[24] A. Hinz, P.-O. Larsson, B. Skarman, A. Andersson, Appl.Catal. B 34 (2001) 161.
[25] F. Zhang, N. Guan, Y. Li, X. Zhang, J. Chen, H. Zeng, Langmuir 19 (2003) 8230.
[26] H. M. Sung-Suh, J. R. Choi, H. J. Hah, S. M. Koo, Y. C. Bae, J. Photochem. Photobiol., A 163 (2004) 37.
[27] T. Sano, N. Negishi, D. Mas, K. Takeuchi, J. Catal. 194 (2000) 71.
[28] W. Lee, H.-S. Shen, K. Dwight, A. Wold, J. Solid State Chem. 106 (1993) 288.
[29] B. Ohtaini, Y. Okugawa, S.-i. Nishimoto, T. Kagiya, J. Phys. Chem. 91 (1987) 3550.
[30] C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, P. Peralta-Zamora, Chemosphere 40 (2000) 427.
[31] T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, M. Matsumura, J. Phys. Chem. B 101 (1997) 6415.
[32] H. Tada, K. Teranishi, Y.-i. Inubushi, S. Ito, Langmuir 16 (2000) 3304.
[33] S. C. Chan, M. A. Barteau, Langmuir 21 (2005) 5588.
[34] Y. Zhou, C. Y. Wang, H. J. Liu, Y. R. Zhu, Z. Y. Chen, Mater. Sci. Eng., B 67 (1999) 95.
[35] M. Sokmen, A. Ozkan, J. Photochem. Photobiol., A 147 (2002) 77.
[36] T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol., A 140 (2001) 163.
[37] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B 31 (2001) 145.
[38] T. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J. Zhao, N. Serpone, Sol. Energy Mater. Sol. Cells 73 (2002) 287.
[39] F. Hurd, R. Livingston, J. Phys. Chem. 44 (1940) 865.
[40] M. Grätzel, J. Photochem. Photobiol. C 4 (2003) 145.
[41] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature 261 (1976) 402.
[42] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382.
[43] M. Grätzel, Inorg. Chem. 44 (2005) 6841.
[44] Z.-S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18 (2006) 2912.
[45] W.-J. Lee, H. Okada, A. Wakahara, A. Yoshida, Ceram. Int. 32 (2006) 495.
[46] K. Kakiuchi, E. Hosono, S. Fujihara, J. Photochem. Photobiol., A 179 (2006) 81.
[47] M. Matsui, Y. Hashimoto, K. Funabiki, J.-Y. Jin, T. Yoshida, H. Minoura, Synth. Met. 148 (2005) 147.
[48] J. E. Kroeze, T. J. Savenije, Thin Solid Films 451-452 (2004) 54.
[49] M. A. Aegerter, Sol. Energy Mater. Sol. Cells 68 (2001) 401.
[50] M. Lira-Cantu, F. C. Krebs, Sol. Energy Mater. Sol. Cells 90 (2006) 2076.
[51] N.-G. Park, J. Lagemaat, A. J. Frank, J. Phys. Chem. B 104 (2000) 8989.
[52] M. Grätzel, J. Sol-Gel Sci. Technol. 22 (2001) 7.
[53] M. Grätzel, J. Photochem. Photobiol., A 164 (2004) 3.
[54] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev 248 (2004) [1] P. Robert, International Energy Agency World Energy Outlook (2002).
[2] P. Robert, International Energy Agency Renewables in Global Energy Supply An IEA Fact Sheet (2002).
[3] P. Robert, Brittish Petroleum Statistical Review of World Energy (2003).
[4] M. A. Fox, M. T. Dulay, Chem. Rev. 93 (1993) 341.
[5] J. M. Herrmann, Catal. Today 53 (1999) 115.
[6] M. Grätzel, Nature 414 (2001) 338.
[7] C.-G. Wu, L.-F. Tzeng, Y.-T. Kuo, C. H. Shu, Appl. Catal. A 226 (2002) 199.
[8] A. D. Paola, G. Marci, L. Palmisano, M. Schiavello, M. K. Uosaki, S. Ikeda, B. Ohtani, J. Phys. Chem. B 106 (2002) 637.
[9] I.-H. Tseng, W.-C. Chang, J. C. S. Wu, Appl. Catal. B 37 (2002) 37.
[10] G. Colon, M. C. Hidalgo, J. A. Navio, Appl. Catal. A 231 (2002) 185.
[11] S. Goeringer, C. R. Chenthamarakshan, K. Rajeshwar, Electrochem. Commun. 3 (2001) 290.
[12] U. Diebold, Surf. sci. Reprot 48 (2003) 53.
[13] A. L. Linsebigler, G. Lu, J. J. T. Yates, Chem. Rev. 95 (1995) 735.
[14] M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, J. Phys. Chem. B 106 (2002) 10674.
[15] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Appl. Catal. B 39 (2002) 75.
[16] R. W. Matthews, J. Phys. Chem. 91 (1987) 3328.
[17] A. Sclafani, J. M. Herrmann, J. Phys. Chem. 100 (1996) 13655.
[18] J. A. Navio, G. Colon, M. Trillas, J. Peral, X. Domenech, J. J. Testa, J. Padron, D. Rodriguez, M. I. Litter, Appl. Catal. B 16 (1998) 187.
[19] L. B. Khalil, W. E. Mourad, M. W. Rophael, Appl. Catal. B 17 (1998) 267.
[20] B. O. Regan, M. Grätzel, Nature 353 (1991) 737.
[21] V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, J. Photochem. Photobiol., A 148 (2002) 233.
[22] H. E. Chao, Y. U. Yun, H. U. Xingfang, A. Larbot, J. Eur. Ceram. Soc. 23 (2003) 1457.
[23] J. Zhu, W. Zheng, B. He, J. Zhang, J. Mol. Catal. A: Chem. 216 (2004) 35.
[24] A. Hinz, P.-O. Larsson, B. Skarman, A. Andersson, Appl.Catal. B 34 (2001) 161.
[25] F. Zhang, N. Guan, Y. Li, X. Zhang, J. Chen, H. Zeng, Langmuir 19 (2003) 8230.
[26] H. M. Sung-Suh, J. R. Choi, H. J. Hah, S. M. Koo, Y. C. Bae, J. Photochem. Photobiol., A 163 (2004) 37.
[27] T. Sano, N. Negishi, D. Mas, K. Takeuchi, J. Catal. 194 (2000) 71.
[28] W. Lee, H.-S. Shen, K. Dwight, A. Wold, J. Solid State Chem. 106 (1993) 288.
[29] B. Ohtaini, Y. Okugawa, S.-i. Nishimoto, T. Kagiya, J. Phys. Chem. 91 (1987) 3550.
[30] C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, P. Peralta-Zamora, Chemosphere 40 (2000) 427.
[31] T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, M. Matsumura, J. Phys. Chem. B 101 (1997) 6415.
[32] H. Tada, K. Teranishi, Y.-i. Inubushi, S. Ito, Langmuir 16 (2000) 3304.
[33] S. C. Chan, M. A. Barteau, Langmuir 21 (2005) 5588.
[34] Y. Zhou, C. Y. Wang, H. J. Liu, Y. R. Zhu, Z. Y. Chen, Mater. Sci. Eng., B 67 (1999) 95.
[35] M. Sokmen, A. Ozkan, J. Photochem. Photobiol., A 147 (2002) 77.
[36] T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol., A 140 (2001) 163.
[37] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B 31 (2001) 145.
[38] T. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J. Zhao, N. Serpone, Sol. Energy Mater. Sol. Cells 73 (2002) 287.
[39] F. Hurd, R. Livingston, J. Phys. Chem. 44 (1940) 865.
[40] M. Grätzel, J. Photochem. Photobiol. C 4 (2003) 145.
[41] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature 261 (1976) 402.
[42] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382.
[43] M. Grätzel, Inorg. Chem. 44 (2005) 6841.
[44] Z.-S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18 (2006) 2912.
[45] W.-J. Lee, H. Okada, A. Wakahara, A. Yoshida, Ceram. Int. 32 (2006) 495.
[46] K. Kakiuchi, E. Hosono, S. Fujihara, J. Photochem. Photobiol., A 179 (2006) 81.
[47] M. Matsui, Y. Hashimoto, K. Funabiki, J.-Y. Jin, T. Yoshida, H. Minoura, Synth. Met. 148 (2005) 147.
[48] J. E. Kroeze, T. J. Savenije, Thin Solid Films 451-452 (2004) 54.
[49] M. A. Aegerter, Sol. Energy Mater. Sol. Cells 68 (2001) 401.
[50] M. Lira-Cantu, F. C. Krebs, Sol. Energy Mater. Sol. Cells 90 (2006) 2076.
[51] N.-G. Park, J. Lagemaat, A. J. Frank, J. Phys. Chem. B 104 (2000) 8989.
[52] M. Grätzel, J. Sol-Gel Sci. Technol. 22 (2001) 7.
[53] M. Grätzel, J. Photochem. Photobiol., A 164 (2004) 3.
[54] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev 248 (2004) 1381.
[55] T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, N. Tanabe, J. Photochem. Photobiol., A 164 (2004) 199.
[56] T. Kawashima, H. Matsui, N. Tanabe, Thin Solid Films 445 (2003) 241.
[57] S. Ito, T. Takeuchi, T. Katayama, M. Sugiyama, M. Matsuda, T. Kitamura, Y. Wada, S. Yanagida, Chem. Mater. 15 (2003) 2824.
[58] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80 (1997) 3157.
[59] M. K. Nazeeruddin, P. Pechy, T. Renouard , S. M. Zakeeruddin, R. Humpbry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123 (2001) 1613.
[60] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 25 (2006) 638.
[61] N. Robertson, Angew. Chem. Int. Ed. 45 (2006) 2338.
[62] G. Schlichthorl, N. G. Park, A. J. Frank, J. Phys. Chem. B 103 (1999) 782.
[63] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, J. Phys. Chem. B 105 (2001) 1422.
[64] A. Zaban, J. Zhang, Y. Diamant, O. Melemed, J. Bisquert, J. Phys. Chem. B 107 (2003) 6022.
[65] X.-T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Stao, A. Fujishima, Sol. Energy Mater. Sol. Cells 81 (2004) 197.
[66] J.-H. Yum, S. Nakade, D.-Y. Kim, S. Yanagida, J. Phys. Chem. B 110 (2006) 3215.
[67] K. S. W. Sing, D.H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603.
[68] H.-Y. Byun, R. Vittal, D. Y. Kim, K.-J. Kim, Langmuir 20 (2004) 6853.
[69] K.-M. Lee, V. Suryanarayanan, K.-C. Ho, Sol. Energy Mater. Sol. Cells 90 (2006) 2398.
[70] P.-T. Hsiao, K.-P. Wang, C.-W. Cheng, H. Teng, J. Photochem. Photobiol., A 188 (2007) 19.
[71] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 107 (2003) 8983.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊