跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李健仁
研究生(外文):Chien-Jen Li
論文名稱:以分子動力學模擬二氧化碳在石墨片與鉑邊界之吸附現象
論文名稱(外文):Molecular Dynamics simulation of Carbon Dioxide adsorption on graphite and platinum surfaces
指導教授:王金樹王金樹引用關係林水泉林水泉引用關係
口試委員:許文震翁宗賢李石頓
口試日期:2008-01-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:分子動力模擬CO2微孔隙表面能吸附
外文關鍵詞:Molecular Dynamic SimulationCO2adsorb
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉兩片石墨片所限制之空間為系統空間,CO2分子置於系統內部,然後改變5個不同表面能(ε*=1、1.58、2.24、3.16、4.47)、3個不同溫度(240K、260K、280K)、3個不同密度(ρ*=0.293、0.39、0.44)參數來作模擬,發現表面能提升到ε*=4.47,最低溫240K,最高密度ρ*=0.44可以產生較多的液體分子,了解整個系統的吸附情形主要是受邊界之吸附能,溫度之逃脫能以及密度改變產生壓縮效應之影響,另外再與金屬鍵鉑邊界來作交叉比較。
同樣得到結果可發現,Τ*越大動能越大,在物理上代表逃脫力越大,分子愈易趨向氣體分子,而ε*愈大,其邊界吸附力愈強,分子愈易冷凝成液體分子,故兩者之相對比較平衡下為其相變化之狀態。
提高表面能、降低溫度、增加密度皆可以使系統液體分子的數目增加,但在低溫會發生吸附之不均勻性,而比較共價鍵石墨片與金屬鍵Pt吸附之能力,比較在280K,石墨片在ε*=1時表面能為1.11×10-21J,而鉑板在ε*=2.24時表面能為2.13×10-21J,雖然鉑板表面能較大,但是石墨片系統液體分子卻是高於鉑板的,並且鉑邊界液體分子要超過石墨片必須增加表面能至ε*=2.24,這顯示了石墨的排列結構對於物理吸附上的優勢。
This study puts CO2 in the system which affiliation two piece of flake graphite limit. To change 5 kind of surface energy (ε*=1、1.58、2.24、3.16、4.47),3 kind of temperature(240K、260K、280K) and 3 kind of density(ρ*=0.293、0.39、0.44). The results show that more CO2 change liquid from gas in surface energy is 4.47,the lowest temperature is 240K, and the highest density is 0.44. In this system, the adsorption is controlled by adsorptive energy at boundary, escaptive energy of temperature, and variation of density. We also puts CO2 in two piece of Pt limit to compare different between graphite and Pt. The results show that kinetic energy was increased with Τ*.
授權書
審定書
以分子動力學模擬二氧化碳在石墨片與鉑邊界之吸附現象 I
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究目的與動機 2
1.3研究理論的選擇 3
1.4文獻回顧 4
1.4.1 相關模擬分析 4
1.4.2 關於ECBM 6
1.5論文架構 7
第二章 基礎理論 12
2.1吸附現象 12
2.2分子模擬簡介 12
2.3系統能量定義 13
2.4 溫度與動能關係 14
2.5 運動方程式 14
2.6 原子間的位能勢 15
2.6.1決定Lennard-Jones勢能參數 15
2.6.2 CO2分子間與CO2分子與碳的位能勢 16
2.6.3 Pt與CO2的位勢能 16
2.6.4碳原子間的位能勢 17
第三章 研究方法 23
3.1 模型設定 23
3.1.1低壓模型 23
3.1.1高壓模型 24
3.2表面改質的方法 25
3.3系統密度溫度改變方法 25
3.4模擬流程 26
3.5電腦數值計算技巧 26
3.5.1週期性邊界條件 26
3.5.2溫度與速度修正 27
3.5.3 Verlet積分方程 28
3.5.4 截斷半徑(Cut-Off radius(rc)) 29
3.5.5 Verlet列表法 29
3.5.6 無因次化 29
3.5.7 物理特性分析----徑向分佈函數 30
第四章 結果與討論 47
4.1探討Pt邊界內固定ρ*、T*改變ε*對系統之影響 47
4.1.1CO2在溫度T3*=1.21(T=280K)、ρ1*=0.293(N=216顆)下 48
4.1.2 CO2在溫度T1*=0.93(240K)、ρ1*=0.293(N=216顆)下 48
4.2探討石墨片內固定ρ*、T*改變ε*對系統之影響 49
4.2.1 CO2在溫度T3*=1.21(280K)、ρ1*=0.293(N=216顆)下 49
4.2.2 CO2在溫度T1*=(240K)、ρ1*=0.293(N=216顆)下 49
4.3探討Pt邊界內固定T*、ε*改變ρ*對系統之影響 50
4.4探討石墨片內固定T*、ε*改變ρ*對系統之影響 50
4.5探討鉑邊界內固定ρ*、ε*改變T*對系統之影響 51
4.6探討石墨片內固定ρ*、ε*改變T*對系統之影響 51
第五章 結論 74
5.1 結果討論 74
5.2 未來展望 75
參考文獻 76
附錄A 本研究預定之模擬項目及結果 80
附錄B Radius DistributionFunction推導 81
符號彙表 84
[1]沈世宏,因應二氧化碳捕捉與封存技術衝擊的我國能源政策,化石燃料排放二氧化碳之捕捉儲存與利用技術研討會,2006,第40-41頁。
[2]杜悅元,台電公司因應溫室氣體管制之策略,電力事業因應全球暖化策略與技術國際研討會,2006,第18-20頁。
[3]Climate Change 2001: Synthesis Report, IPCC 2001, pp79-87.
[4]David G. Hawkins, Daniel A. Lashof, Robert H. Williams, What to do about Coal, Scientific American, 2006/9 ,pp.68-75
[5]Zhong Lingwen.Adsorptive capacity of coals and its affecting[J].Earth Science-Journal of China University of Geosciences,2004,29(3):327-332.
[6]Schreurs H C E. Feasibility for enhanced coalbed methane in the Netherlands-potential and economic evaluation[A].In: Proceedings of the Third International CBM/CMM Symposiun in China[C]. Xuzhou: China University of Mining and Technology Press,2002. pp79-87.
[7]Nicholson D,Gubbins K E. J.Chem.Phys.,1996,104(20),8126–8134
[8]Wu G W,Chan K Y. Fluid Phase Equil.,1997,132:21–31
[9]Yi X H,Shing K S,Sahimi M. AIChE J.,1995,41(3),456–468
[10]Peterson B K,Gubbins K E. Mol.Phys.,1987,62(1),215–226
[11]Ulberg D E,Gubbins K E. Mol.Phys.,1995,84(6),1139–1153
[12]G. A Bird, “Molecular Gas Dynamics and the Direct Simulation of Gas Flow,” Oxford University Press, New York, 1954, 1139–1153.
[13]邱士恆,微噴嘴流之蒙地卡羅直接模擬,碩士論文,國立台灣大學應用力學研究所,台北,1999。
[14]李宗舉,應用蒙地卡羅直接模擬法研究微型通道中氣流的行為,碩士論文,清華大學,1998。
[15]K. Yasuoka, M. Matsumoto, Y. Kataoka, J. Chem. Phys. 101 , 1994, 7904.
[16]A. Rytkönen, S. Valkealahti and M. Manninen, J. Chem. Phys. 106 , 1997, p. 1888.
[17]N. Yamaguchi, Y. Sasajima, K. Terashima and T. Yoshida, Thin Solid Films 345 , 1999, p. 34.
[18]M. Fichtmuller, G. Corrigan, L. Lauro-Taroni, R. Simonini, J. Spence, E. Springmann and A. Taroni, J. Nucl. Mater. 266–269 , 1999, p. 330.
[19]M.S. Korlie, Comput. Math. Appl. 39 , 2000, p. 43.
[20]T.H. Fang and C.I. Weng, Nanotechnology 11 , 2000, p. 148.
[21]W.J. Chang, Microelectron. Eng. 65 , 2003, p. 239.
[22]B. J. Alder, and T. E. Wainwright, “Studies in Molecular Dynamics. I. General Method,” J. Chem. Phys., 1959, p.459.
[23]Megen W V,Snook I K. Mol.Phys.,1985,54(3) 741–755.
[24]Johnson J K,Zollweg J A,Gubbins K E. Mol.Phys.,1993,78(3)591–618.
[25]Jiang S Y,Rhykerd C L,Gubbins K E. Mol.Phys.,1993,79(2)373–391.
[26]Han K K,Cushman J H,Diestler D J. Mol.Phys.,1993,79(3)537–545.
[27]S. Maruyama, S. Matsumoto, A. Ogita, “Surface Phenomena of Molecular Clusters by Molecular Dynamics Method,” Thermal Sci. Eng., vol.2, No.1, 1994, pp.77-84.
[28]S. Maruyama , T. Kurashige , “Liquid Droplet in Contact with a Solid Surface” , Thermophysical Phenomena in Microscale Sensors , Devices , and Structures , Baltimore , 1997, pp.77-84.
[29]S. Maruyama , T. Kurashige , “A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface”, 1999 ,AJTE99-6511 ,.
[30]V. Aleksey , I. Peter , Ravikovitch , V. Alexander , V. Neimark , “Molecular Level Models for CO2 Sorption in Nanopores , Langmuir 1999 , 15, 8736-8742.
[31] S. Maruyama , T. Katsuto , Ming-Chang LU , “Molecular Scale Aspects of Liquid Contact on a Solid Surface” Thermal Science & Engineering Vol. 10 No.6. , 2002,pp.67-82.
[32]S.A. Adelmann, J.D. Doll, J. Chem. Phys., vol . 61,1974,pp12.
[33]J.C. Tully, J. Chem. Phys., vol.73, 1980-1975 (4).
[34]J.G. Chang , C.C. Hwang , S.P. Ju , S.H. Huang , ” A molecular dynamics investigation into the structure of fullerene C60 grown on a diamond substrate. ” ,Carbon ,42 ,2004,pp2609-2616.
[35]Y. Watanabe , H. Yamaguchi , M. Hashinokuchi , K. Sawabe , S. Maruyama , Y. Matsumoto , K. Shobatake , “Trampoline motions in Xe-graphite(0001) surface scattering” ,Chemical Physics Letters , 413, 2005 ,331-334
[36]I. Skarmoutsos , J. Samios , “Local intermolecular structure and dynamics in binary supercritical solutions. A molecular dynamics simulation study of methane in carbon dioxide. ” , Journal of Molecular Liquids 125,2006 ,181-186.
[37]R. Krishna , J.M. van Baten , E. Garcia-Perez , S. Calero , “ Incorporating the Loading Dependence of the Maxwell-Stefan Diffusivity in the Modeling of CH4 and CO2 Permeation Across Zeolite Membranes. ” Ind. Eng. Chem. Res. ,46,2974-2986.
[38]M. Firouzi , T.T .Tsotsis , M. Sahimi, “Molecular dynamics simulations of transport and separation of supercritical carbon dioxide-alkane mixtures in supported membranes.” ,Chemical Engineering Science ,62, 2007,pp 2777-2789.
[39]Arri, L.E., Yee, D., Morgan, W.D., Jeansonne, M.W., 1992. Modelingcoalbed methane production with binary gas sorption. Caspar Wyoming, SPE Rocky Mountain Regional Meeting, SPE,vol. 24363, pp. 459–472.
[40]Greaves, K.H., Owen, L.B., McLennan, J.D., 1993. Multi-component gas adsorption–desorption behaviour of coal. Proceedings International Coalbed Methane Symposium, Tuscaloosa, Alabama.
[41]Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40, 1361.
[42]Myers, A.L., Prausnitz, J.M., 1965. Thermodynamics of mixed-gas adsorption. Journal of the American Institute of Chemical Engineers 11, 121–127.
[43]Cui, X., Bustin, M.C., Dipple, G., 2004. Selective transport of CO2 ,CH4 and N2 in coals: insights from modeling of experimental gas adsorption data. Fuel 83, 293– 303.
[44]Goodman, A.L., Busch, A., Duffy, G., Fitzgerald, J.E., Gasem,K.A.M., Gensterblum, Y., Krooss, B.M., Levy, J., Ozdemir,E., Pan, Z., Robinson Jr., R.L., Schroeder, K., Sudibandriyo,M., White, C., 2004. Inter-laboratory reproducibility of CO2 adsorption isotherms measured for the Argonne premium coalsamples. Energy and Fuels 18, 1175– 1182.
[45]Busch, A., Gensterblum, Y., Krooss, B.M., 2003a. Methane and CO2 sorption and desorption measurements on dry Argonne Premium Coals: pure components and mixtures. International Journal of Coal Geology 55, 205– 224.
[46]Andreas Busch,Yves Gensterblum,Bernhard M.Krooss,Nikolai Siemons, Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: An experimental study ,International Journal of Coal Geology, 66 (2006), 53– 68.
[47]Nikolai Siemons, Pressure dependence of the contact angle in a CO2–H2O–coal system, Journal of Colloid and Interface Science, 297 (2006), 755–761.
[48]Hongguan Yu, Guangzhu Zhou, Weitang Fan, Jianping Ye, Predicted CO2 enhanced coalbed methane recovery and CO2 sequestration in China, International Journal of Coal Geology ,71 (2007), 345–357.
[49]G.X. Wang,Z.T. Wang,V. Rudolph,P. Massarotto, R.J. Finley, An analytical model of the mechanical properties of bulk coal under confined stress,Science Direct Fuel, 86 (2007), 1873–1884.
[50]J.T. Baker a, S.-H. Kimb, D.C. Gitz b, D. Timlin b, V.R. Reddyb, A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide, Environmental and Experimental Botany 51 (2004) 103–110.
[51]Shin-ichi Furukawa, Satoshi Kato, Tomoshige Nitta, Molecular dynamics studies on clustering process of solute moleculesthrough rapid expansion of supercritical fluids, Fluid Phase Equilibria 219 (2004) 33–36.
[52]Tomohisa Yoshioka, Toshinori Tsuru, Masashi Asaeda, Molecular dynamics studies on gas permeation properties through microporous silica membranes, Separation and Purification Technology 25 (2001) 441–449.
[53]陳筱舒,以分子動力學研究奈米三角熱管之非平衡熱傳行為,碩士論文,國立台北科技大學,台北,2004。
[54]袁士達,以分子動力學模擬單壁奈米碳管在定溫定管徑下對氬原子吸附之研究,碩士論文,國立台北科技大學,台北,2005。
[55]林文彥,氬原子在奈米V型溝槽下之分子動力學模擬研究,碩士論文,國立台北科技大學,台北,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top