跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明達
研究生(外文):Ming-Da Tsai
論文名稱:植基於動態結構類神經網路之馬達旋轉故障診斷系統研製
論文名稱(外文):Design and Implementation of Diagnosis System for Motor Rotary Faults Based on Dynamic Structure Neural Network
指導教授:曾傳蘆曾傳蘆引用關係
口試委員:李仁貴王順源江昭皚
口試日期:2008-07-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:91
中文關鍵詞:馬達旋轉故障動態結構類經網路小波故障特徵
外文關鍵詞:Motor Rotary FaultsDynamic Structure Neural Network(DSNN)WaveletFault Characteristic
相關次數:
  • 被引用被引用:8
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是研製一個智慧型馬達旋轉故障診斷系統。此系統的設計是基於常見的馬達旋轉故障,且應用動態結構類神經網路進行鑑別。
系統主體架構可分為:振動訊號量測、濾波處理、故障鑑別。訊號量測部份是將感測設備裝置於待測馬達端,再經由接收器讀取其振動訊號以便後續處理。由於量測的訊號易受外在機械結構的干擾,使得實際量測訊號常附帶有雜訊成份,因此本論文採用小波濾波器建立雜訊消除機制,以降低馬達故障診斷的誤判率。
故障鑑別機制則是採用改良式動態結構類神經網路。以往類神經網路中隱藏層神經元數的選取並沒有標準的理論根據,所以容易造成神經元學習時無法達到最佳網路架構與適時的收斂。因此可調神經元數的網路架構,將可動態調整出最佳鑑別效果的類神經網路。由於馬達故障時,其故障特徵會在特定倍頻中呈現,而且不同故障所擁有的故障特徵也不盡相同。因此本論文利用此種故障特性,擷取特定倍頻做為類神經網路的輸入訊號,而輸出訊號則是馬達故障種類的鑑別結果。
最後,本論文使用MATLAB軟體撰寫整體故障診斷系統,整合訊號量測、濾波、故障特徵擷取以及診斷系統於人機介面中。由實驗結果可知所研製的改良式動態結構類神經網路架構具有良好的鑑別精確度。
This thesis is mainly devoted to developing an intelligent diagnosis system for motor rotary faults. The design of this system is for the common motor rotary faults, and adopts the dynamic structure neural network to establish the diagnosis functionality.
The main structure of system can be divided into three modules: measurement of vibration signal, filtering process and fault classification. The vibration signal measurement is done by mounting the sensing module on the motor cast, and utilizing the receiver to read vibration signal for follow-up processing. Because the measured signal is apt to be influenced by the mechanical structure or other environmental factors, the signal often contains noises. To solve the problem, this thesis adopts the wavelet mechanism to filter the noises out, which may reduce the error rate of fault diagnosis.
The fault classification method uses the improved dynamic structure neural network. For the conventional neural networks, there is lack of methods to determine the number of hidden neurons. It leads that the network structure is not optimal and the convergence problem arises in the learning process. Using the dynamic structure neural network, the optimal neural network could be obtained by adjusting the number of neurons.
For the motor rotary faults, it is known that the characteristics of motor faults appear in specific harmonic frequencies and different faults cause different frequency patterns. This thesis utilizes the fault characteristics and extracts the special frequency patterns as the input of the neural network. The output of the neural network is the classification result of the corresponding fault.
To implement the intelligent fault diagnose system, this thesis uses MATLAB software. The system includes the signal measurement, filtering, fault characteristics extraction, and diagnosis function. All the functions can be executed by using the friendly graphical user interface. From the experimental results, it is found that the classification results outperform than the previous results.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 2
1.3 研究目的與方法 5
1.4 論文架構 5
第二章 馬達旋轉故障與特徵擷取 7
2.1 前言 7
2.2 振動訊號分析 7
2.3 旋轉機械故障分析 10
2.3.1 軸彎曲故障特性 10
2.3.2 不對心故障特性 11
2.3.3 機械鬆動故障特性 12
2.3.4 不平衡故障特性 13
2.3.5 軸承故障特性 13
2.3.6 其他故障特性 16
2.4 故障特徵擷取 18
2.5 本章結論 19
第三章 濾波器簡介 21
3.1 前言 21
3.2 主動式雜訊控制 22
3.3 小波轉換 23
3.4 小波濾波 27
3.4.1 閥值函數 28
3.5 濾波範例 29
3.6 本章結論 31
第四章 改良式動態結構類神經網路 32
4.1 前言 32
4.2 類神經網路簡介 32
4.2.1 神經元的模型 32
4.2.2 類神經網路架構 34
4.3 倒傳遞類神經網路 37
4.4 改良式動態結構類神經網路 41
4.4.1 改良式動態結構類神經網路的結構 41
4.4.2 改良式動態結構類神經網路的演算法 42
4.5 基於不同應用的效能比較 48
4.6 本章結論 60
第五章 使用DSNN於智慧型馬達旋轉故障診斷系統設計與驗證 61
5.1 前言 61
5.2 整體系統架構設計 61
5.2.1 整體系統流程 62
5.2.2 濾波流程介紹 63
5.2.3 故障鑑別機制 64
5.3 模擬結果 66
5.3.1 濾波器模擬比較 66
5.3.2 IDSNN與BPNN的鑑別系統模擬與比較 71
5.4 使用者圖形介面簡介 76
5.5 本章結論 83
第六章 結論與未來展望 84
6.1 結論 84
6.2 未來展望 85
參考文獻 86
[1]A. Sadoughi, M. Ebrahimi and E. Rezaei, “A new approach for induction motor broken bar diagnosis by using vibration spectrum,” International Joint Conference on the Society of Instrument and Control Engineers - Institute of Control, Automation and Systems Engineers, Oct. 2006, pp. 4715-4720.
[2]王志豪,智慧型馬達旋轉故障診斷系統設計,碩士論文,國立臺北科技大學電機工程系,台北,2007。
[3]G. Betta, C. Liguori, A. Paolillo and A. Pietrosanto, “A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 51, Dec. 2002, pp. 1316-1322.
[4]S. Wan, Y. Li, H. Li and G. Tang, “The new diagnosis method of rotor winding inter-turn short circuit fault and imbalance fault based on stator and rotor vibration characteristics,” Proceedings of the Eighth International Conference on Electrical Machines and Systems, vol. 3, 27-29 Sept. 2005, pp. 2207-2210.
[5]C. Y. Chang and K. K. Shyu, “Active noise cancellation with a fuzzy adaptive filtered-X algorithm,” IEE Proceedings of Circuits, Devices and Systems, vol. 150, 6 Oct. 2003, pp. 416-422.
[6]C. Y. Chang and K. K. Shyu, “A self-tuning fuzzy filtered-U algorithm for the application of active noise cancellation,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, Sep. 2002, pp. 1325-1333.
[7]R. Bambang, “Active noise cancellation using recurrent radial basis function neural networks,” Asia-Pacific Conference on Circuits and Systems, vol. 2, 28-31 Oct. 2002, pp. 231-26A.
[8]P. Kang and D. Birtwhistle, “Analysis of vibration signals for condition monitoring of power switching equipment using wavelet transform,” Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 6-9 Oct. 1998, pp. 437-440.
[9]X. Wang, D. Zhu, F. Li and N. Liu, “Application of expert system (ES) technology in fault diagnosis of steam turbine generators,” Proceedings of IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol. 3, 28-31 Oct. 2002, pp. 1869-1872.
[10]H. G. Sedding, B. A. Lloyd, G. C. Stone, J. M. Braun and J. C. White, “ Development of novel instrumentation and expert system concepts in turbine generator condition monitoring,” Fourth International Conference on Electrical Machines and Drives, 13-15 Sep. 1989, pp. 177-181.
[11]R. Szczesny, P. Kurzynski, H. Piqueb and K. Hwan, “Knowledge-base system approach to power electronic system fault diagnosis,” IEEE International Symposium on Industrial Electronics, vol. 2, 1996, pp. 1005-1010.
[12]H. Su and K. Chong, “Induction machine condition monitoring using neural network modeling,” IEEE Transactions on Industrial Electronics, vol. 54, Feb. 2007, pp. 241-249.
[13]M. ElSayed, R. Hassan, M. Aboul and S. Shady, “Monitoring and diagnosis of external faults in three phase induction motors using artificial neural network,” Power Engineering Society General Meeting, 24-28 June 2007, pp. 1-7.
[14]B. Li, M. Y. Chow, Y. Tipsuwan and J. C. Hung, “Neural-network-based motor rolling bearing fault diagnosis,” IEEE Transactions on Industrial Electronics, vol. 47, Oct. 2000, pp. 1060-1069.
[15]S. Hayashi, T. Asakura and Z. Sheng, “Study of machine fault diagnosis system using neural networks,” Proceedings of the 2002 International Joint Conference on Neural Networks, vol. 1, 12-17 May 2002, pp. 956-961.
[16]R. Bayir and O. F. Bay, “Serial wound starter motor faults diagnosis using artificial neural network,” Proceedings of the IEEE International Conference on Mechatronics, 3-5 June 2004, pp. 194-199.
[17]R. R. Schoen, T. G. Habetler, F. Kamran and R. G. Bartfield, “Motor bearing damage detection using stator current monitoring,” IEEE Transactions on Industry Applications, vol. 31, Nov.-Dec. 1995, pp. 1274-1279.
[18]A. Siddique, G. S. Yadava and B. Singh, “Identification of three phase induction motor incipient faults using neural network,” Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, 19-22 Sept. 2004, pp. 30 -33.
[19]J. Lehtoranta and H. N. Koivo, “Fault diagnosis of induction motors with dynamical neural networks,” IEEE International Conference on Systems, Man and Cybernetics, vol. 3, 10-12 Oct. 2005, pp. 2979-2984.
[20]X. Wang and Y. He, “Diagonal recurrent neural network based on-line stator winding turn fault detection for induction motors,” Proceedings of the Eighth International Conference on Electrical Machines and Systems, vol. 3, 27-29 Sept. 2005, pp. 2266-2269.
[21]S. Altug, M. Y. Chen and H. J. Trussell, “Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis,” IEEE Transactions on Industrial Electronics, vol. 46, Dec. 1999, pp.1069-1079.
[22]Q. J. Guo, H. B. Yu and A. D. Xu, “Wavelet fuzzy neural network for fault diagnosis,” Proceedings of International Conference on Communications, Circuits and Systems, vol. 2, 27-30 May 2005, pp. 993-998.
[23]X. Jin, Z. Li and G. Yu, “Fault diagnosis of aerospace rolling bearings based on improved wavelet-neural network,” Proceedings of the 26th Chinese Control Conference, 26 July 2007, pp. 525-529.
[24]C. Xiang, X. Huang, D. Huang and J. Hu, “Wavelets neural network based on particle swarm optimization algorithm for fault diagnosis,” First International Conference on Innovative Computing, Information and Control, vol. 3, 30-01 Aug. 2006, pp. 320-323.
[25]Q. J. Guo, H. B. Yu and A. D. Xu, “Modified morlet wavelet neural networks for fault detection,” International Conference on Control and Automation, vol. 2, 26-29 June 2005, pp. 1209-1214.
[26]S. A. McInerny and Y. Dai, “Basic vibration signal processing for bearing fault detection,” IEEE Transactions on Education, vol. 46, Feb. 2003, pp. 149-156.
[27]K. Debebe, V. Rajagopalan and T. S. Sankar, “Diagnosis and monitoring for AC drives,” Conference Record of Industry Applications Society Annual Meeting, 4-9 Oct. 1992, pp. 370-377.
[28]D. M. Xie, X. Song, H. L. Zhou and M. W. Guo, “Fuzzy vibration fault diagnosis system of steam turbo-generator rotor,” Proceedings of International Conference on Machine Learning and Cybernetics, vol. 1, 4-5 Nov. 2002, pp. 411-415.
[29]G. Goddu, B. Li, M. Y. Chow and J. C. Hung, “Motor bearing fault diagnosis by a fundamental frequency amplitude based fuzzy decision system,” Proceedings of the 24th Annual Conference on Industrial Electronics Society, vol. 4, 31 Aug. 1998, pp. 1961-1965.
[30]X. Q. Liu, H. Y. Zhang, J. Liu and J. Yang, “Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network,” IEEE Transactions on Industrial Electronics, vol. 47, Oct. 2000, pp. 1021-1030.
[31]A. K. Pradhan, S. R. Mohanty and A. Routray, “Neural fault classifier for transmission line protection - a modular approach,” IEEE on Power Engineering Society General Meeting, 18-22 June 2006, pp. 1-5.
[32]J. A. Leonard and M. A. Kramer, “Radial basis function networks for classifying process faults,” IEEE on Control Systems Magazine, vol. 11, April 1991, pp. 31-38.
[33]X. Z. Gao, S. J. Ovaska and Y. Dote, “Motor fault detection using Elman neural network with genetic algorithm-aided training,” IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, 8-11 Oct. 2000, pp. 2386-2392.
[34]C. L. Chuang, Y. L. Lu, T. L. Huang, Y. T. Hsiao and J. A. Jiang, “Recognition of multiple PQ disturbances using dynamic structure neural networks; part 1: theoretical introduction,“ Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005, pp. 1-6.
[35]C. L. Chuang, Y. L. Lu, T. L. Huang, Y. T. Hsiao and J. A. Jiang, “Recognition of multiple PQ disturbances using wavelet-based neural networks; part 2: implementation and applications,” Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005, pp. 1-6.
[36]R. Jardim-Goncalves, M. Martins-Barata, J. Alvaro Assis-Lopes and A. Steiger-Garcao, “Application of stochastic modelling to support predictive maintenance for industrial environments,” IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, 14-17 Oct. 1996, pp. 117-122.
[37]賴耿陽,滾動軸承的選擇與使用,台南市:復漢出版色有限公司,2001。
[38]趙安明,馬達故障診斷之模糊類神經網路,碩士,中原大學機械工程學系,中壢市,2004。
[39]趙鵬程,軸承的使用與故障對策,台北市:全華科技圖書公司,1999。
[40]成大先,機械設計手冊,北京:化學工業出版社,2004。
[41]劉長記,軸承手冊,台北市:徐氏基金會,1981。
[42]S. M. Kuo and D. R. Morgan, Active noise control systems_algorithms and dsp implementations, New York: John Wiley & Sons, 1996.
[43]單維彰,凌波初步,台北市:全華出版社,2000。
[44]I. Daubechies, Ten lectures of wavelets, Society for Industrial Applied Mathematics, 1992.
[45]董長虹,MATLAB小波分析工具箱原理與應用,北京:國防工業出版社,2004。
[46]葉怡成,類神經網路模式應用與實作,台北市:儒林圖書有限公司出版社,2003。
[47]林昇甫,洪成安,神經網路入門與圖形辨識,台北市:全華科技圖書股份有限公司,2002。
[48]谷荻隆嗣,人工神經網絡與模糊信號處理,北京:科學出版社,2003。
[49]D. E. Rumelhart, J. L. McClelland and the PDP Research Group, “Parallel distributed processing,” MIT press, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊