跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育誠
研究生(外文):Yu Cheng Jhang
論文名稱:利用串聯式光載波抑制分離技術與拉曼放大器建構於高性能長距離高密度分波多工傳輸系統之研究與設計
論文名稱(外文):The Research and Design of Using SOCSS and Raman Amplifier Based on High Performance and Long-Haul DWDM Transport Systems
指導教授:賴柏洲賴柏洲引用關係
口試委員:孫卓勳余合興鄔文杰
口試日期:2008-07-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:串聯式光載波抑制分離高密度分波多工拉曼放大器色散補償
外文關鍵詞:SOCSSDWDMRaman amplifierdispersion compensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以串聯式光載波抑制分離(Series Optical Carrier Suppressed and Separa- tion;SOCSS)技術創造出「少雷射多通道」的C+L頻帶光源。實驗架構中以20個雷射光源進入串聯式光載波抑制分離架構產生出80個高密度分波多工(Dense Wavelength Division Multiplexer;DWDM)通道波長,其通道間距為0.4 nm(50 GHz),功率平坦度為±0.38 dB,利用此光源傳輸在單模光纖(Single Mode Fiber;SMF)上,再分別比較兩種色散補償光纖-色散補償光纖(Dispersion Compensation Fiber;DCF)和反向色散光纖(Reverse Dispersion Fiber;RDF)的色散補償情況,並利用兩者高拉曼增益的特性搭配上拉曼放大器放大信號於C+L頻帶,使得此兩種負色散光纖在補償單模光纖所累積的色散值同時也進行補償損耗的功率,再針對這80個10Gbit/s、非歸零碼(Non-return to Zero;NRZ)通道信號傳輸探討其Q值大於6,即誤碼率(Bit Error Ratio;BER)在 以下的最長傳輸距離,其中以單模光纖配上反向色散光纖的組合的傳輸系統較佳,可達1017km的傳輸距離。
長距離且高傳輸量的高密度分波多工系統必定未來的趨勢,但由於C+L頻帶的頻寬有限,通道間距0.8 nm系統的傳輸量已經不夠使用。因此本文以「少雷射多通道」方式探討通道間距為0.4 nm在C+L頻帶的傳輸,並針對此系統的色散和功率損失兩大問題作補償,期望本論文研究的結果可作為將來的學術研究、固網、電信業者、有線電視和鐵路局等的系統工程師在設計系統與佈放光纜的依據。
In this thesis, we produced light source in C+L band by using series optical carrier suppressed and separation (SOCSS). 20 laser sources entered SOCSS structure after multiplexing and produced 80 DWDM channels of channel spacing 0.4nm and power flatness ±0.38 dB. They were transmitted within SMF and compared performance of dispersion compensation between DCF and RDF. The employing of high Raman gain of two kinds of negative dispersion fiber made that the Raman amplifier could compensate dispersion and power in C+L band at the same time. We investigated maximum transmitting distance with Q factor of 80×10 Gbit/s NRZ signal channels greater than 6, BER below 10-9. The maximum transmitted distance was 1017km in SMF+RDF structure.
There was a great tendency in the future towards DWDM system with long distance and high transmission capacity. Because of limited bandwidth in C+L band, transmission capacity of the system of channel spacing 0.8nm was not enough to use. In this thesis, we proposed “less-laser-much-channel” system of channel spacing 0.4nm and power flatness ±0.38 dB in C+L band and solved the problem of dispersion and power loss. We hoped that the results in this thesis were helpful to academic research, system designers of fixed network, CATV, and telecommunication in system designed and fiber disposed.
目 錄

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文結構 4
第二章 基礎理論與元件 5
2.1 色散與光纖 5
2.1.1 色散簡介 5
2.1.2 單模光纖 6
2.1.3 色散補償光纖 7
2.1.4 反向色散光纖 7
2.2 拉曼光纖放大器 9
2.2.1 拉曼散射起緣 9
2.2.2 受激拉曼散射 10
2.2.3 拉曼增益 10
2.2.4 拉曼放大器-單模光纖、色散補償光纖、反向色 散光纖 14
2.3 光載波抑制分離結構與原理 17
2.4 眼圖測試與誤碼率計算 20
2.4.1 眼圖測試 20
2.4.2 誤碼率計算 22
第三章 系統模組設計 25
3.1 串聯式光載波抑制之光源設計 25
3.2 色散補償光纖與反向色散光纖之拉曼放大器設計 28
3.2.1 色散補償光纖拉曼放大器 28
3.2.2 反向色散光纖拉曼放大器 35
第四章 系統架構與模擬結果分析 42
4.1 使用色散補償光纖補償色散之架構 42
4.1.1 架構一-7km DCF+80km SMF+13km DCF為一區段 42
4.1.2 架構二-10km DCF+80km SMF+10km DCF為一區段 43
4.1.3 架構三-13km DCF+80km SMF+7km DCF為一區段 43
4.1.4 結果 45
4.2 利用反向色散光纖補償色散之架構 53
4.2.1 架構四-10km RDF+80km SMF+23km RDF為一區段 54
4.2.2 架構五-16km RDF+80km SMF+17km RDF為一區段 54
4.2.3 架構六-23km RDF+80km SMF+10km RDF為一區段 55
4.2.4 結果 57
4.3 結果分析 65
第五章 結論 69
參考文獻 71
附錄A 在學期間發表之論文 74
參考文獻

[1] 賴柏洲編著,光纖通信與網路技術,全華科技圖書公司,台北, 2003,第1章和第11章。
[2] H. Taga, “Long distance transmission experiments using the WDM technology,” J. Lightw. Technol., vol. 14, no. 6, pp. 1287-1298, Jun. 1996.
[3] G. K. Chang and J. Yu, “Multirate payload switching using a swappable optical carrier suppressed label in a packet-switched DWDM optical network,” J. Lightw. Technol., vol. 23, no. 1, pp. 196-202, Jan. 2005.
[4] H. H. Lu and W. S. Tsai, “A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport,” IEEE Trans. Broadcasting, vol. 49, no. 1, pp. 97-102, Mar. 2003.
[5] G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Modulation formats suitable for ultrahigh spectral efficient WDM systems,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 2, pp. 321-328, Mar./Apr. 2004.
[6] R. Luo, T. G. Ning, T. J. Li, L. B. Cai, F. Qiu, S. S. Jian, and J. J. Xu, “FTTH - a promising broadband technology,” in Proc. Communications, Circuits and Systems Conf., vol. 1, May 2005, pp. 609-612.
[7] S. V. Kartalopoulos, DWDM: network, devices, and technology, John Wiley, 2002 Chap. 4.
[8] E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoff for teconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615-626, Jul./Aug. 2006.

[9] V. Saminadan and M. Meenakshi, “Impact of linear and nonlinear crosstalk on the teletraffic performance of WDM optical networks,” in Proc. Wireless and Optical Communications Networks Conf.(WOCN2006), Apr. 2006.
[10] J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhancement of the performance of a reflective SOA-based hybrid WDM/TDM PON system with a remotely pumped erbium-doped fiber amplifier,” J. Lightw. Technol., vol. 26, no. 1, pp. 144-149, Jan. 2008.
[11] A. E. Willner and S. M. Hwang, “Transmission of many WDM channels through a cascade of EDFA''s in long-distance links and ring networks,” J. Lightw. Technol., vol. 13, no. 5, pp. 802-816, May 1995.
[12] B. Jopson and A. Gnauck, ”Dispersion compensation for optical fiber systems,” IEEE Commun. Mag., vol. 33, no. 6, pp. 96-102, Jun. 1995.
[13] M. Murakami, T. Matsuda, H. Maeda, and T. Imai, “Long-haul WDM transmiss- ion using higher order fiber dispersion management,” J. Lightw. Technol., vol. 18, no. 9, pp. 1197-1204, Sept. 2000.
[14] K. Mukasa and T. Yagi, “Dispersion flat and low non-linear optical link with new type of reverse dispersion fiber,” in Optical Fiber Communication Conf. (OFC2001), vol. 2, 2001, pp. TuH7-1-TuH7-3.
[15] Q. Guanshi, R. Jose, and Y. Ohishi, “Design of ultimate gain-flattened O-, E-, and S+ C+ L ultrabroadband fiber amplifiers using a new fiber Raman gain medium,” J. Lightw. Technol., vol. 25, no. 9, pp. 2727-2738, Sept. 2007.
[16] A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band tellurite -based fiber Raman amplifier,” J. Lightw. Technol., vol. 21, no. 5, pp. 1300-1306, May 2003.

[17] L. G. Nielsen, Q. Yujun, B. Palsdottir, P. B. Gaarde, S. Dyrbol, and T. Veng, “Module for simultaneous C+L-band dispersion compensation and Raman amplification,” in Optical Fiber Communication Conf.(OFC 2002), Mar. 2002, pp. 65-66.
[18] Z. Jia, T. Yu, and C. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol. 18, no. 16, pp. 1726-1728, Aug. 2006.
[19] J. Yu and G.. kung, “A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 320-322, Jan. 2004.
[20] M. Fujiwara, M. Teshima, J. I. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightw. Technol., vol. 21, no. 11, pp. 2705-2714, Nov. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用改良式光載波供給元件與色散補償技術建構於超高密度分波多工系統之研究與設計
2. 40Gbit/s利用色散補償光纖高拉曼增益架構長距離高密度分波多工傳輸系統之研究與設計
3. 使用單一馬赫倫德爾調變器與光相位反轉技術應用於高密度分波多工系統長距離傳輸之研究與設計
4. 光梳頻技術整合混合式光纖放大器於高密度分波多工傳輸系統之研究與設計
5. 利用不同調變格式搭配頻譜轉換技術應用於高密度分波多工系統之長距離傳輸的研究與設計
6. 頻譜轉換技術應用於高密度分波多工系統之長距離傳輸的研究與設計
7. 多波長產生技術應用於高密度分波多工傳輸系統之研究與設計
8. 應用PON技術提升郊區路口監視器影像傳輸技術與穩定性之設計與研究
9. NG-SDH交換機應用於新ㄧ代國際數據EPLC擴展頻寬的技術與架構之研究
10. 光梳頻產生器搭配無色光源技術整合混合式光纖放大器於雙向傳輸之分波多工被動式光網路的研究與設計
11. 多波長產生器搭配不同傳輸架構應用於高密度分波多工系統之長距離傳輸的研究與設計
12. NGN交換機應用於國際骨幹網路上之研究與設計
13. 利用CSRZ-DPSK調變應用於長距離高密度分波多工傳輸系統之研究與設計
14. 運用光梳頻產生器搭配無色光源技術應用於雙向傳輸之分波多工被動式光網路的研究與設計
15. 使用Y因子方法量測雜訊指數準確度之研究