跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳芳逸
研究生(外文):Fang-Yi Chen
論文名稱:40Gbit/s利用色散補償光纖高拉曼增益架構長距離高密度分波多工傳輸系統之研究與設計
論文名稱(外文):The Research and Design of the 40Gbit/s High Raman Gain of DCF for Long Distance DWDM Transmission System
指導教授:賴柏洲賴柏洲引用關係
口試委員:孫卓勳呂海涵林恭如
口試日期:2008-07-07
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:69
中文關鍵詞:拉曼放大器載波抑制歸零碼色散補償光纖大有效面積光纖
外文關鍵詞:Raman amplifierCSRZDCFLEAF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用拉曼放大器搭配單模光纖、大有效面積光纖以及色散補償光纖組合不同的光路配置,並且測試NRZ、RZ、CSRZ三種調變格式於40Gbit/s傳輸速度時長距離傳輸之效益,而後延伸討論應用在高密度分波多工系統傳輸。
  對照於現有的配置摻鉺光纖放大器傳輸40Gbit/s系統,我們提出利用色散補償光纖的高拉曼增益特性,可以達到與摻鉺光纖放大器相同的增益效果,並且在相同傳輸距離以及誤碼率下,拉曼放大器所需數目較摻鉺光纖放大器相對少一半、雜訊指數更小且可用頻帶更寬。在普遍既有的基礎單模光纖架構上即可靈活運用色散補償光纖長度調整增益及色散補償,不需額外的系統即可達到傳輸40Gbit/s訊號的目的。
In order to transmit 40Gbit/s data for long distance, the thesis will discuss using the Raman characteristics of dispersion compensation fiber (DCF) to construct a Raman amplifier. The 40Gbit/s data will be modulated by three modulation formats, NRZ, RZ, and CSRZ. Two kind of devices, i.e., single mode fiber (SMF)+DCF and large effective area fiber (LEAF)+DCF are employed to evaluate the effect of transmitting 40Gbit/s different modulation formats over 800km distance. Experimental results indicate that the Raman amplifier constructed by DCF has low noise finger (NF), wide bandwidth, and the request amplifier number in system are fewer than EDFAs. Comparing the results of three modulation formats transmitted in the two devices, it shows that CSRZ is the most suitable one for 40Gbit/s data without complex components.
目 錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 2
第二章 光纖放大器原理簡介 4
2.1 光纖放大器之介紹 4
2.2 摻鉺光纖放大器 6
2.3 拉曼光纖放大器 8
2.3.1 拉曼光纖放大器之原理 8
2.3.2 拉曼光纖放大器基本架構 11
第三章 調變格式 16
3.1 調變簡介 16
3.2 調變格式 17
3.3 系統效能判別 21
3.3.1誤碼率計算 21
3.3.2眼圖分析 24
第四章 利用DCF高拉曼增益之40Gbit/s傳輸系統架構及特性測量 26
4.1 40Gbit/s速度之傳輸距離 26
4.2 搭配DCF與EDFA之傳輸架構 29
4.3 搭配DCF與拉曼放大器之傳輸架構 32
4.3.1 光纖類型、長度與拉曼增益 32
4.3.2 使用DCF高拉曼增益之傳輸之系統 34
4.4 利用拉曼放大器傳輸800km之DWDM系統 37
4.4.1 單一區段(100km)之DWDM架構 37
4.4.2 8個區段(800km)使用SMF+DCF之DWDM架構 42
4.4.3 8個區段(800km)使用LEAF+DCF之DWDM架構 53
4.5 實驗結果與討論 64
第五章 結論 66
參考文獻 68
參考文獻

[1]賴柏洲編著,光纖通信與網路技術,全華科技圖書公司,台北,第1-2頁,2003。
[2]H. Lee, J. Oh, D.lee, and S. Hwang, “Performance of 16×10 Gb/s WDM transmissions over 4×40 km of SMF using lineaf optical amplifiers combined with Raman-pumped dispersion compensation fibers under dynamic add-drop situations,” IEEE Photon. Technol. Lett., Vol. 16, pp. 1576-1578, Jun. 2004.
[3]N. Takachio and H. Suzuki, “Applications of Raman-Distributed Amplification to WDM Transmission Systems Using 1.55-μm Dispersion-Shifted Fiber,” J. Lightw. Technol., Vol. 19, pp.60-69, 2001.
[4]R Hui, S. Zhang, B. Zhu, R. Huang, C. Allen, and D. Demarest, “Advanced Optical Modulation Formats and Their Comparison in Fiber-Optic Systems,” ITTC-FY2004-TR-15666-01, Information and Telecommunication Technology Center, The University of Kansas and Sprint Corporation, Kansas, 2004.
[5]J. H. Franz and V. K. Jain, Optical Communications Components and Systems, Alpha Science, North America, pp. 245-267, 2000.
[6]J. W. Nicholson, “Dispersion compensating Raman Amplifiers with pump reflectors for increased efficiency,” J. Lightw. Technol., Vol. 20, No. 8, pp.1758-1762, Aug. 2003.
[7]S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE Photon. Technol. Lett., Vol. 14, pp. 932-934, Aug. 2002.
[8]C. R. S. Fludger, V. Handerck, and R. J. Mears, “Ultra-wide bandwidth Raman amplifiers,” in OFC 2002, Anaheim Convention Center Anaheim, California, pp. 60-62.
[9]J. Bromage, “Raman amplification for fiber communication system,” in OFC 2003, Atlanta, Georgia, USA, Paper TuC1, pp. 32-35.
[10]J. H. Chen, “Implementation and Research of the Broadband and High-Gain Raman Fiber Amplifier,” MD. Thesis, Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, 2006.
[11]C. C. Chen, “Researching in dispersion compensated structures、modulated type and the relationship between input power and transmission distance in the WDM system,” MD. Thesis, Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, 2002.
[12]L. Binh and T. Huynh, “Phase-modulated hybrid 40Gb/s and 10Gb/s DPSK DWDM long-haul optical transmission,” in Proc. Optical Fiber Communication and th National Fiber Optic Engineers Conf.(OFC/NFOEC 2007), San Diego, Mar. 2007, pp. 1-11.
[13]W. Li, M. Chen, Y. Dong, and S. Xie, “All-Optical Format Conversion From NRZ to CSRZ and Between RZ and CSRZ Using SOA-Bascd Fiber Loop Mirror,” IEEE Photon. Technol. Lett., Vol. 16, NO. 1, pp. 203-205, Jan. 2004.
[14]M. Hayee and A. Willner, “NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems,” IEEE Photon. Technol. Lett., Vol. 11, No. 8, pp. 991-993, Aug. 1999.
[15]M. Pfennigbauer and P. Winzer, “Choice of MUX/DEMUX Filter Characteristic for NRZ, RZ, and CSRZ DWDM Systems,” J. Lightw. Technol., Vol. 24, No. 4, pp.1689-1696, Apr. 2006.
[16]K. Ennser and K. petermann, “Peformance of RZ- versus NRZ-transmission on standard single-mode fibers,” IEEE Photon. Technol. Lett., Vol. 8, No. 3, pp.443-445, Mar. 1996.
[17]楊祥林編著,光纖通信系統,國防工業出版社,北京,第28-62頁,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊