跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 05:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾岳達
研究生(外文):Yueh-Ta Chung
論文名稱:GPS小型化低溫共燒陶瓷天線之研製
論文名稱(外文):Study of a LTCC Chip Antenna for GPS Application
指導教授:孫卓勳孫卓勳引用關係王錫福
指導教授(外文):Jwo-Shiun SunSea-Fue Wang
口試委員:莊清松程光蛟賴柏洲
口試委員(外文):Kwong-Kau TiongPo-Chou Lai
口試日期:2008-06-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:60
中文關鍵詞:晶片天線低溫共燒陶瓷全球衛星定位系統二次共燒
外文關鍵詞:Chip AntennaLTCCGPSPost Fire
相關次數:
  • 被引用被引用:2
  • 點閱點閱:530
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要的目的為設計於手持式行動裝置中的低溫共燒陶瓷天線,並運用調整天線陶瓷基板之參數來達到小型化、低頻段及改善高介質係數所產生之窄頻問題。進行設計分析與探討,以符合預期的應用。天線饋入方式是採用50歐姆傳輸線的形式,這種天線主要的好處在於將結構簡單的天線製作在僅使用單一層的金屬的介質基板上,因此未來將更容易製作在積體電路上,也符合通訊產品要普遍,需要要求簡單製作、成本低、小型化的優點,並透過二次共燒的製程,降低天線製作過程的變異性,以達到目標的天線頻段。
本論文將探討兩個天線主題,第一個天線主題為低溫共燒陶瓷晶片天線設計應用於全球衛星定位系統之頻段。第二個主題為討論該天線所使用之陶瓷基板,並利用第一個天線主題的結構加以延伸,將基板參數改變後,相對應之係數改變對於天線頻段、特性之改變,使之能夠操作在1.575GHz頻段為前提下,找出最適當之係數值。最後,實際製作並量測設計的天線,與模擬結果加以驗證,並獲得頻寬約160MHz,反射損失-12.9dB。雖與模擬之中心頻率有20MHz偏移,但仍適用於全球衛星定位系統使用之結果。
This main propose of the paper is to design a LTCC chip antenna and for an embedded handset communication device. To achieve the miniaturization at lower frequency band by adjusting to the parameters of substrate for improving the bandwidth improvement. This advantage of designed antenna lies in the simple structure antenna manufactured using the sole level on the metal medium foundation plate.
The present paper will discuss two subjects. The first subject is to design the ceramic chip antenna with LTCC technology to apply frequency band in the Global Positioning System (GPS). The second subject to discuss ceramics substrate of this antenna use, and extends with the designed antenna structure by changing the parameter of substrate corresponding to the feature of antenna to operate at 1.575GHz frequency band, with suitable coefficient value. Finally, the simulation results are approved by the results of experiments. We get the bandwidth is 160MHz, and return is -12.9dB, although antenna center frequency and conclusion of simulate vary about to 20MHz, it still could be used in GPS.
中文摘要……………………………………………………………………………… i
英文摘要……………………………………………………………………………....ii
致謝…………………………………………………………………………………...iii
目錄…………………………………………………………………………………...iv
圖目錄………………………………………………………………………………...vi
表目錄……………………………………………………………………………….viii
第一章 緒論………………………………………………………………………..1
1.1 前言 1
1.2 研究目的 2
1.3 文獻探討 3
1.4 論文架構 5
第二章 天線基礎…………………………………………………………………. 6
2.1 天線原理 6
2.2 天線輻射原理 6
2.3 偶極天線 7
2.4 單極天線 13
2.5 微帶型天線 14
2.6 曲折型天線 14
2.7 晶片型天線 18
第三章 低溫共燒陶瓷理論 20
3.1 LTCC簡介 20
3.2玻璃基板之重要性 25
3.3 LTCC優缺點 28
第四章 LTCC GPS晶片天線製作 38
4.1概述 38
4.2介質基板製作 38
4.2.1材料選用 38
4.2.2低溫共燒陶瓷基板製程 40
4.2.3基板特性分析 43
4.3 GPS天線設計 46
4.3.1介質基板厚度對天線頻寬之影響…………………………………..47
4.4天線燒成製作 48
4.5天線量測與討論 50
4.5.1 輻射場型與增益量測環境說明 52
4.5.2 天線輻射場型與增益 53
第五章 結論 56
參考文獻……………………………………………………………………………..57
[1]R. R. Tummala, “Ceramic and glass-ceramic packaging in 1990s,” J. Am. Ceram. Soc., vol.74, no.5, pp. 895-908, 1991.
[2]R. R. Tummala and E. J. Rymaszewski, Microelectronic Packaging Handbook, Van Nostrand, New York, chap. 7, 1980.
[3]L. Wang, X. M. Li, A. Tian, D. H. Chang, and Z. Zheng, “Dense lead-free glass ceramic for electronic devices,” U.S. Pat, 6844278, 2005.
[4]J. H. Jean and J. I. Shen, “Binary Crystallizable Glass Composite for Low-Dielectric Multilayer Ceramic Substrate,” Jpn. J. Appl. Phys., vol. 35, pp. 3942-3946, 1996.
[5]S. K. Muralidhar, G. J. Roberts, A. S. Shaikh, D. J. Leandri, D. L. Hankey, and T. J. Vlach, “Low dielectric, low temperature fired glass ceramics,” U.S. Pat, 5258335, 1993.
[6]S. K. Muralidhar, A. S. Shaikh, G. J. Roberts, D. J. Leandri, D. L. Hankey, and T. J. Vlach, “Low dielectric, low temperature fired glass ceramics,” U.S. pat, 51643, 1992.
[7]K. Kata, S. Yuzo, and T. Hide, “Low dielectric constant new materials for multilayer ceramic substrate,” IEEE transactions on components, hybrids, and manufacturing technology, vol. 13, no. 2, pp. 448-451, 1990.
[8]Boccia L., Amendola G., and Di Massa G., “A Dual Frequency Microstrip Patch Antenna for High-Precision GPS Applications,” IEEE Antennas and Wireless Propag. Lett, vol.3, pp. 157-1609, 2004.
[9]R. T. Albertson, J. Arthur, and M. H. Rashid, “Overview of Electromagnetic Interference,” IEEE North American Power Symposium, Carbondale, (2006)
[10]K. L. Wong, S. W. Su, C. L. Tang, and S. H. Yeh, “Internal shorted patch antenna for a UMTS folder-type mobile phone,” IEEE Trans. Antennas Propag., vol. 53, pp. 3391-3394, 2005.
[11]S. W. Su, K. L. Wong, C. L. Tang, and S. H. Yeh, “Wideband monopole antenna integrated within the front-end module package,” IEEE Trans. Antennas Propag., vol. 54, pp. 1888-1891, 2006.
[12]W. H. Lee, H. Chen, C. W. Tang, C. Y. Su, and R. Lei, “High Performance Packaging with Multilayer Ceramic Antenna Switch Module for Wireless Communication,” International Electronic Materials and Packaging Symposium, pp. 403-408, 2002.
[13]M. Ah, G.J. Hayes, H. S. Hwang, and R. A. Sadler, “Design of a Multi-Band Internal Antenna for Third Generation Mobile Phone Handsets,” IEEE Trans. Antennas Propagation, vol. 51, no. 7, pp. 1452-1461, 2003.
[14]K. Fujimoto, A. Hendenon, K. Hirasaya, and J. R. James, Small Antenna, Research Studies Press, UK, 1987.
[15]Nader Behdad, and Kamal Sarabandi, “A Compact Antenna for Ultrawide-Band Applications,” IEEE Trans. Antennas Propag., vol. 53, no. 7, Jul. 2005.
[16]J. D. Kraus and R. J. Marhefka, Antennas for all applications 3rd Ed., McGraw-Hill Companies, New York, 2002.
[17]G. A. Deschamps, “Microstrip microwave antennas,” Third USAF Sympothium on Antennas, 1953.
[18]Lal Chand Godara, Handbook of Antenna in Wireless Communications, Boca Raton London, New York, Washington,D.C., pp. 12-8, 12-40, 2002.
[19]M. Ali, S. S. Stuchly, and K. Caputa, Journal of Electromagnetic Waves and Applications, vol. 10, no. 9, pp. 1223-1236, 1996.
[20]H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, “Shortening ratio of modified dipole antennas,” IEEE Trans. Antennas Propag., vol. AP-32, no. 4, pp. 385-386, Apr. 1984.
[21]H. Y. Wang and M. J. Lancaster, “Aperture-coupled thin-film superconducting meander line antennas,” IEEE Trans. Antennas Propag., vol. 47, no. 5, pp. 829-836, May 1999.
[22]R. R. Tummala, “Ceramic and glass-ceramic packaging in 1990s,” J. Am. Ceramic Soc., vol. 74, no. 5, pp. 895-908, 1991.
[23]R. R. Tummala and E. J. Rymaszewski, Microelectronic Packaging Handbook, Van Nostrand, New York, 1989, chap. 7.
[24]T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, “Effects of glass additions on (Zr,Sn)TiO4 for microwave applications,” J. Am. Ceramic Soc., vol. 77, no. 9, pp. 2485-2488, 1994.
[25]L. Halbo and P. Ohlckers, Textbook: Electronics Components, Packaging and Production, http://www.fys.uio.no/studier/kurs/fys317/, 2007.
[26]黃文輝,「歐盟環保指令實施後廠商注意事項及因應」,歐盟環保指令正式實施對我廠商影響及因應之道研討會,台北市,2006.
[27]M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Avil
[28]M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Avilés, “Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST),” Sensors and Actuators A: Physical, vol. 89, no. 3, pp. 222-241, 2001.
[29]TD. M. Mattox, S. R. Gurkovich, J. A. Olenick, and K. M. Mason, “Low DielectricConstant, Alumina-Compatible, Co-Fired Multilayer Substrate,” Ceram. Eng. Sci. Proc., vol. 9, no. 11-12, pp. 1567-78, 1988.
[30]T. Oda and M. Tomita, “New LTCC Technology with Integrated Components - ''Developments and Future Trends’ - Module Miniaturization for Wireless Network Applications,” in 2nd International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, 2006.
[31]R. Kulke, M. Rittweger, P.Uhlig, and C. Günner, “LTCC Multilayer Ceramic. For Wireless and Sensor Applications,” Uhttp://www.ltcc.deU, 2001.
[32]R. Kulke, C. Günner, S. Holzwarth, J. Kassner, A. Lauer, M. Rittweger, P. Uhlig, and P. Weigand, “H24 GHz Radar Sensor integrates Patch Antenna and Frontend Module in single Multilayer LTCC SubstrateH,” in 15th European Microelectronics and Packaging Conference, Brugge, 2005.
[33]Low temperature cofired ceramics design and layout guidelines, CTS dMicroelectronics CTS LTCC design guide, HTUhttp://www.ctscorp.com/components/Datasheets/design.pdfUTH, 2008.
[34]L. Wang, X. M. Li, A. Tian, D. H. Chang, and Z. Zheng, “Dense lead-free glass ceramic for electronic devices,” U.S. Pat. 6844278, 2005.
[35]J. H. Jean and J. I. Shen, “Binary Crystallizable Glass Composite for Low-Dielectric Multilayer Ceramic Substrate,” Jpn. J. Appl. Phys., vol. 35, pp. 3942-3946, 1996.
[36]S. K. Muralidhar, G. J. Roberts, A. S. Shaikh, D. J. Leandri, D. L. Hankey, and T. J. Vlach, “Low dielectric, low temperature fired glass ceramics,” U.S. pat. 5258335, 1993.
[37]W. H. Lee, H. Chen, C. W. Tang, C. Y. Su, and R. Lei, “High Performance Packaging with Multilayer Ceramic Antenna Switch Module for Wireless Communication,” Electronic Materials and Packaging, Proceedings of the International Symposium, pp. 403-408, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top