跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀宗成
研究生(外文):Tsung-Chen Chi
論文名稱:低溫多晶矽數位電路元件庫之建立與三維影像合成之電路設計
論文名稱(外文):Cell Library Construction for LTPS-TFT Digital Circuits and Design for Non-Hole-Filling Depth Image Based Rendering
指導教授:范育成范育成引用關係
口試委員:黃世緯李佩君賴金輪
口試日期:2008-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:低溫多晶矽三維影像非填補破洞之深度影像描繪三維立體影像合成方法
外文關鍵詞:Low Temperature Poly SiliconThree-Dimensional Stereo ImageNon-Hole-Filling Depth Image Based Rendering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將提及兩部份的成果,分別為低溫多晶矽數位電路元件庫之建構,與三維影像合成之電路設計。前者將以低溫多晶矽新製程技術來建立數位電路的元件資料庫,低溫多晶矽為近期先進的製程,由於載子移動率較高,因此,可將驅動電路、時序電路等整合於面板中,達成System on Panel的目標,適合應用於中小尺寸面板的攜帶型產品,如:手機、PDA或筆記型電腦等,低溫多晶矽所致力的終極目標與現今電子產品「輕薄短小」的趨勢不謀而合,極有發展潛力,但低溫多晶矽目前尚未有Cell Based Design Flow來輔助電路設計,只能使用Full-Custom Design Flow來設計電路,不利於設計複雜的電路,為了實現低溫多晶矽Cell Based Design Flow的願景,將以LCD的核心電路-時序控制電路為設計實例,完整的建構低溫多晶矽之數位電路元件庫。
後者為三維影像合成之電路設計,將使用Depth Image Based Rendering的方法,以二維影像與深度影像來產生左右視角的影像,搭配SHARP LL-151 3D顯示器,顯示三維立體視覺感的影像,在產生左右視角影像的過程中,當深度影像的遠近差距過大,會造成影像上的破洞與瑕疵,需要加以填補破洞與進行後處理,針對此問題,我們提出Non-Hole-Filling Depth Image Based Rendering的修正方法來降低大量的破洞,實驗數據顯示,使用修正方法將能有效減少90%的破洞數量,達到高品質的左右視角影像,進而實現高畫質的三維立體影像。
In our thesis, the construction and verification for LTPS-TFT digital cell library and novel approach of depth image based rendering (DIBR) are proposed. We will briefly introduce as follow. LTPS-TFT process is a new technology in recent years. The process in LTPS-TFT brings us higher carrier mobility characteristic than in A-Si TFT. It also reduces the cost of discrete ICs, shortens the design cycles, decreases the electromagnetic interface (EMI), and realizes the flexible and bending panel to achieve the objective of flexible electronics. Nevertheless, it still has some drawbacks, which are only applied to small or middle size panel and lower operation frequency, etc., and worst of them is that there is no cell-based design flow for LTPS-TFT technology. Up to present, most circuits in LTPS-TFT process are still based on full-custom design style and hence waste much human resource and lead to a long time. For the purpose of reducing a great deal of time and human resource, the construction for LTPS-TFT digital cell library is essential in cell-based design flow.
The 3D-TV makes people experience promising future television. The 3D content of stereoscopic images is the most important specification in 3D-TV system. Traditionally, a stereoscopic image is generated by interlacing the above mentioned two-side view images; however, their prices are very high. Here, we present a new method of non-hole-filling depth image based rendering (NHFDIBR). With this approach, we can produce high quality two-side view images by using 2D image and its pixel-to-pixel depth image. Experimental results provide a comparison between the previous work and the proposed method. It shows that the latter can maintain image quality and reduce a great deal of holes. The statistical results portray that the proposed method can efficiently reduce above 90% hole counts in average. The architecture of NHFDIBR is separated into two steps. First, we will compute the horizontal displacement vector by the formula of converting depth value to depth distance. Then, generate two-side view images by utilizing the formula of image warping. We will use TSMC 1P6M 0.18um in CMOS process to complete our design.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 介紹 1
1.1 簡介 1
1.2 發展與重要性 1
1.2.1 LTPS-TFT LCD 1
1.2.2 Three-Dimensional TV 4
1.3 研究相關情況與動機 5
1.3.1 LTPS-TFT LCD 5
1.3.2 Three-Dimensional TV 6
1.4 論文章節組成 7
第二章 文獻回顧與探討 8
2.1 深度影像 9
2.2 三維影像合成系統 12
2.2.1 Depth Map Generation 12
2.2.2 Depth Image Based Rendering 14
2.2.2.1 Smoothing Depth Image 14
2.2.2.2 Image Warping 15
2.2.2.3 Hole-Filling 15
2.3 結論 16
第三章 研究方法 17
3.1 建立低溫多晶矽數位電路之元件資料庫 17
3.1.1 規劃低溫多晶矽數位電路的元件庫 18
3.1.2 初步繪製各元件實體佈局圖 20
3.1.2.1 Combinational Circuits實體佈局圖 21
3.1.2.2 Sequential Circuits實體佈局圖 22
3.1.2.3 Macro Cell實體佈局圖 23
3.1.3 自動化模擬各元件的特性與建立合成之元件資料庫 24
3.1.4 以初步建立的Liberty Files執行合成的步驟驗證 25
3.1.5 建立自動佈局與繞線軟體所需要的元件資料庫 26
3.1.5.1 Technology File的建立 26
3.1.5.2 CEL View與FRAM View的建立 26
3.1.5.3 TIM View與PWR View的建立 28
3.1.6 以Astro EDA軟體執行自動佈局與繞線的步驟 31
3.1.7 實際晶片下線並改良現有的數位電路元件庫 33
3.2 三維影像合成之電路設計 34
3.2.1 傳統DIBR技術的實現 34
3.2.2 Non-Hole-Filling DIBR技術的實現 37
3.3 結論 39
第四章 架構設計與實現 40
4.1 Non-Hole-Filling DIBR 40
4.1.1 Depth Conversion Architecture 41
4.1.2 3D Image Warping Architecture 42
4.1.3 SRAM Controller 45
4.2 PE Scheduling for Non-Hole-Filling DIBR 47
4.3 結論 49
第五章 實驗方法與結果 50
5.1 模擬方法 52
5.2 實驗結果比較 53
5.2.1 影像的破洞數量比較 53
5.2.2 主觀視覺比較 56
5.3 結論 59
第六章 晶片設計流程 60
6.1 數位電路設計流程 60
6.1.1 規格的確立與演算法分析 61
6.1.2 電路架構設計 62
6.1.3 邏輯合成 62
6.1.4 可測試性電路的設計 62
6.1.5 自動測試向量的產生 64
6.1.6 Gate-Level Simulation、時序驗證與功率初估 65
6.1.7 自動佈局與繞線 65
6.1.8 DRC與LVS的驗證 66
6.1.9 Post-Layout Simulation、時序驗證與功率估測 66
6.1.10 時序驗證與功率估測 66
6.2 數位IC晶片量測流程 66
6.3 晶片實體佈局圖與規格 68
第七章 總結與討論 70
7.1 低溫多晶矽數位電路元件庫之建立 70
7.2 三維影像合成之電路設計 71
參考文獻 73
附錄
A 發表論文 76
[1] K. Yoneda, R. Yokoyama, and T. Yamada, “Development Trends of LTPS TFT LCDs for Mobile Applications,” 2001 Symposium on VLSI Circuits Digest of Technical Papers, pp. 85-90, Jun. 2001.
[2] K. Chung, M. P. Hong, C. W. Kim, and I. Kang, “Needs and Solutions of Feature Flat Panel Display for Information Technology Industry,” IEEE International Electron Devices Meeting, 2002 (IEDM ’02), pp. 385-388, Dec. 2002.
[3] I. W. Wu, “Outlook of Low Temperature Poly Silicon (LTPS) Technology for Information Display and Beyond,” The 16th Annual Meeting of The IEEE Lasers and Electro-Optics Society, 2003, Vol. 2, pp. 882-883, Oct. 2003.
[4] D. N. Liu, Y. H. Yeh, and H. L. Chiou, “Development of Low Temperature p-Si TFT-LCD,” The 17th Annual Meeting of The IEEE Lasers and Electro-Optics Society, 2004, Vol. 1, pp. 182-183, Nov. 2004.
[5] Y. Ukai, “TFT-LCD Manufacturing Technology – Current Status and Feature Prospect –,” IEEE International Workshop on Physics of Semiconductor Devices, 2007 (IWPSD 2007), pp. 29-34, Dec. 2007.
[6] 陳志強,LTPS低溫複晶矽顯示器技術,全華科技圖書股份有限公司,2004.
[7] 鵜飼育弘,System on panel的技術現狀與將來展望,財團法人光電科技工業協進會,2002.
[8] Peter Hohenstatt, Leonardo da Vinci, 1998.
[9] Ubersicht, http://www.3d-historisch.de/.
[10] Ubersicht, http://www.stereoviews.com/fotosfs.html.
[11] L. M. J. Meesters, W. A. Ijsselsteijn, and P. J. H. Seuntiens, “A Survey of Perceptual Evaluations and Requirements of Three-Dimensional TV,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No. 3, pp. 381-391, Mar. 2004.
[12] http://www.sharpmz.org/z80glass.htm.
[13] http://www.samsung.com/us/business/semiconductor/newsList.do.
[14] http://www.tpo.biz/.
[15] http://www.auo.com/.
[16] C. V. Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D-LCD,” Proc. SPIE, Vol. 2653, pp. 32-39, 1996.
[17] S. J. Battersby, “Autostereoscopic Display Apparatus,” U. S. Patent, 6 069 650, 2000.
[18] C. V. Berkel, “Image Preparation for 3D-LCD,” Proc. SPIE, Vol. 3639, pp. 84-91, 1999.
[19] C. V. Berkel, and J. A. Clarke, “Autostereoscopic Display Apparatus,” U. S. Patent, 6 064 424, 2000.
[20] Philips Research, http://www.research.philips.com/.
[21] Philips WOWvx, http://www.wowvx.com/.
[22] http://www.sharp.co.jp.
[23] A. Redert, M. Beeck, C. Fehn, W. Ijsselsteijn, M. Pollyfeys, L. Gool, E. Ofek, I. Sexton, and P. Surman, “ATTEST: Advanced Three-Dimensional Television System Technologies,” IEEE International Symposium on 3D Data Processing Visualization and Transmission, pp. 313-319, Jan. 2002.
[24] C. Fehn, K. Hopf, and Q. Quanta, “Key Technologies for an Advanced 3D-TV System,” in Proceedings of SPIE Three-Dimensional TV Video and Display III, pp. 66-80, Oct. 2004.
[25] J. X. Chai, X. Tong, S. C. Chan, and H. Y. Shum, “Plenoptic Sampling,” in Proceedings of ACM SIGGRAPH ’00 (New Orleans, LA, USA), pp. 307-318, Jul. 2000.
[26] W. Y. Chen, Fast Algorithm and Architecture Design for Stereo Image Synthesis System, Master Thesis, 2006.
[27] 3DV Systems, http://www.3dvsystems.com/.
[28] M. Kawakita, K. Lizuka, T. Aida, H. Kikuchi, H. Fujikake, J. Yonai, and K. Takizawa, “AXI-vision camera (Real-time distance-mapping camera),” Appl. Opt., Vol. 39, pp. 3931-3939, 2000.
[29] M. Kawakita, T. Kurita, H. Kikuchi, and S. Inoue, “HDTV AXI-vision camera,” in Proc. IBC, pp. 397-404, 2002.
[30] L. Zhang, W. Tam, and D. Wang, “Stereoscopic Image Generation Based on Depth Images,” IEEE International Conference on Image Processing (ICIP ‘04), Vol. 5, pp. 2993-2996, Oct. 2004.
[31] N. H. E. Weste and D. Harris, CMOS VLSI Design – A Circuits and Systems Perspective, Addison Wesley, 2004.
[32] http://www.cadence.com/.
[33] http://www.synopsys.com/.
[34] “Synopsys On-Line Documentation (SOLD) Z-2007.06,” Synopsys Incorporation, 2007.
[35] C. Fehn, “A 3D-TV Approach Using Depth-Image-Based-Rendering (DIBR),” in Proceedings of Visualization, Imaging, and Image Processing ’03, Benalmadena, Spain, pp. 482-487, Sep. 2003.
[36] C. Fehn, “A 3D-TV System Based on Video Plus Depth Information,” IEEE Conference Record of The Thirty-Seventh Asilomar Conference on Signals, Systems, and Computers, Vol. 2, pp. 1529-1533, Nov. 2003.
[37] L. Zhang and W. J. Tam, “Stereoscopic Image Generation Based on Depth Images for 3D TV,” IEEE Transactions on Broadcasting, Vol. 51, No. 2, pp. 191-199, Jun. 2005.
[38] i-ART, http://www.i-art.com.tw/.
[39] “i-Magic Camera Plugin V1.0 User’s Manual,” i-Art Corporation.
[40] http://vision.middlebury.edu/stereo/data/.
[41] “最新立體ディスプレイ技術動向セミナー,” Nippon Telegraph and Telephone Corporation, 2007.
[42] “Leveraging 3D from Digital Signage to Entertainment,” Philips Corporation.
[43] “Design for Testability with TurboBIST-Memory, DFT Compiler and TetraMAX,” CIC Training Manual, 2008.
[44] 簡弘倫,Verilog晶片設計,文魁資訊股份有限公司,2005.
[45] “Introduction to Digital IC Testing,” CIC Training Manual, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top