(3.227.208.0) 您好!臺灣時間:2021/04/21 02:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧敦平
研究生(外文):Tun-Ping Teng
論文名稱:奈米流體熱性質分析與提升熱交換性能之研究
論文名稱(外文):Research of Thermal Properties and Enhanced Heat Exchange Performance for Nanofluids
指導教授:卓清松
口試委員:鄭鴻斌張 合鍾清枝陳炳煇陳希立林鴻明
口試日期:2007-10-25
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:384
中文關鍵詞:奈米流體熱傳導係數流變學熱對流係數熱交換器光觸媒
外文關鍵詞:NanofluidsThermal conductivityRheologyHeat convection coefficientHeat-exchangerPhotocatalyst
相關次數:
  • 被引用被引用:5
  • 點閱點閱:534
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主要目的在評估水系奈米流體提升熱交換性能的可行性,由開發高性能熱交換的工作流體與光觸媒自我潔淨兩方面出發,完成奈米流體基本性質與應用研究。在奈米流體製造方面,分別採用一階製程製備「氧化銅-水」奈米流體,使用二階製程製備三氧化二鋁-水與二氧化鈦-水奈米流體,並以實驗研究法探討此三種奈米流體在不同濃度與溫度條件之下,其熱傳導係數、密度、流變特性、壓降及熱對流係數的影響,最後並實際應用於氣冷式熱交換器,藉以評估奈米流體應用於熱交換領域之可行性。而在光觸媒自我潔淨方面,則是使用二氧化鈦奈米流體披覆於不�袗�基板上,製成光觸媒反應器,評估在開放式熱交換系統除藻的性能。
本研究針對氧化銅-水、三氧化二鋁-水與二氧化鈦-水奈米流體進行相關實驗研究,主要的貢獻除了在於確認奈米流體相關基礎性質之外,更在壓降、熱交換性能與開發光觸媒除藻裝置進行實驗研究,並在研究結果中發現傳統磨擦係數方程式無法計算層流範圍的壓降,故由實驗數據提出修正,以符合層流區間壓降估算的需求。在熱對流係數與熱交換的研究發現,熱交換器的結構與溫度亦會影響奈米流體在熱傳性能。此外,本研究所提出的光觸媒除藻裝置能有效地抑制水中藻類滋生,達到淨化水質的功能。
上述研究成果希望能對奈米流體熱交換領域的研究者進行相關研究時參考,並對節能與開發新型高熱交換性能工作流體方面有所貢獻。
The main purpose of this thesis is to evaluate the feasibility of enhancing heat exchange performance by water-based nanofluids. The research is conducted from two aspects: the development of work fluids with high performance of heat exchange, and the self-cleaning of photocatalyst, so as to study the fundamental properties and application of nanofluids. In the aspect of preparation of nanofluids, CuO-water nanofluid was prepared by one-step synthesis of continuously controlled submerged arc nano synthesis system (CC-SANSS); Al2O3- and TiO2-water nanofluids were prepared by two-step synthesis. In the aspect of fundamental properties, experimental research method was implemented to investigate the influence on the thermal conductivity, density, rheology, pressure drop and heat convection coefficient of three types of nanofluids under different weight fractions and different temperatures. Finally, the study practically applied them to the air-cooled heat exchanger, so as to evaluate the feasibility of applying nanofluids to the domain of heat exchange. In the aspect of self-cleaning by photocatalyst, a photocatalytic reactor was made by coating TiO2 nanofluids on the stainless steel plate, and it was used to evaluate the de-algae performance in an open heat exchange system.
The study underwent the related experimental research focusing on CuO, Al2O3 and TiO2–water nanofluids. Not only contributive to the confirmation of their fundamental properties, the study also implemented experimental research of pressure drop, heat exchange performance, and the development of photocatalytic de-algae device. From the results of research, it was discovered that the traditional friction factor equation could not calculate the pressure drop in laminar flow region. Hence, the study proposed a revised equation by experimental data to estimate the pressure drop in laminar flow region. From the experimental data of heat convection coefficient and heat exchange volume, it was found that the structure and temperature of heat exchanger would influence the heat transfer performance of nanofluids. Besides, the photocatalytic de-algae device proposed by the study could effectively restrain the growth of algae in water, and had water treatment function.
The researcher of the thesis hopes that the above research results can be referential to the later researchers conducting the related studies of the heat exchange of nanofluids, energy saving and development of heat exchange work fluid with high performance.
CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vii
List of Tables xiii
List of Figures xiv
Chapter 1 INTRODUCTION 1
1.1 Background of research 1
1.2 Research motives and objectives 4
1.3 Research method 7
1.4 Thesis organization 11
1.5 Literature review 12
Chapter 2 ANALYSIS OF RELATED THEORY OF NANOFLUIDS 43
2.1 Manufacture of nanoparticles and nanofluids 43
2.1.1 Preparing of nanoparticles 43
2.1.2 Preparing of nanofluids 45
2.2 Sedimentation and stability of nanofluids 49
2.2.1 Sedimentation 49
2.2.2 Iso-electrical point 52
2.3 Mechanism of suspension and enhanced heat transfer of nanofluids 54
2.3.1 Influence of Brownian motion on nanofluids 55
2.3.2 Solid-liquid interfacial layer of nanofluids 57
2.3.3 Ballistic phonons theory 59
2.3.4 Clustering effect in nanofluids 61
2.4 Physical properties of nanofluids 64
2.4.1 Thermal conductivity 64
2.4.2 Density 78
2.4.3 Specific heat and thermal capacity 80
2.4.4 Thermal diffusivity 80
2.4.5 pH value 81
2.4.6 Viscosity and rheology 82
2.4.7 Measurement method of physical properties 88
2.5 Heat convection and application of nanofluids 95
2.5.1 Property of flow in pipe 96
2.5.2 Heat transfer coefficient 99
2.5.3 Pressure drop of pipes 101
2.5.4 Thermodynamic analysis of heat exchanger 103
2.5.5 Estimation method for the quantity of heat exchange 106
2.6 Photocatalyst 110
2.6.1 Principles of photocatalyst 110
2.6.2 Photocatalytic property and principles of TiO2 114
2.6.3 Influential factor for photocatalytic reaction 118
2.6.4 Manufacture method of photocatalytic film 122
Chapter 3 EXPERIMENTAL DESIGN 127
3.1 Preparation and analysis of specimen 127
3.2 Design for measurement of iso-electrical point 130
3.3 Design for measurement of thermal conductivity 133
3.4 Design for measurement of density 135
3.5 Design for measurement of viscosity and rheology 137
3.6 Design for measurement of pressure drop 139
3.7 Design for measurement of heat convection coefficient 142
3.8 Design for measurement of the quantity of heat exchange 146
3.9 Design for manufacturing of TiO2 photocatalytic film in reactor 150
3.10 Design for measurement of de-algae by TiO2 photocatalyst 152
Chapter 4 RESULTS AND DISCUSSION 157
4.1 Analytic results and discussion of the preparation of specimens 157
4.1.1 Analytic results and discussion of the preparation of CuO-water nanofluid 157
4.1.2 Analytic results and discussion of the preparation of Al2O3-water nanofluid 162
4.1.3 Analytic results and discussion of the preparation of TiO2-water nanofluid 172
4.2 Results and discussion of measurement of iso-electrical point 178
4.2.1 Results and discussion of iso-electrical point of CuO-water nanofluids 178
4.2.2 Results and discussion of iso-electrical point of Al2O3-water nanofluids 180
4.2.3 Results and discussion of iso-electrical point of TiO2-water nanofluids 183
4.3 Results and discussion of measurement of thermal conductivity 185
4.3.1 Results and discussion of thermal conductivity of CuO-water nanofluids 185
4.3.2 Results and discussion of thermal conductivity of Al2O3-water nanofluids 192
4.3.3 Results and discussion of thermal conductivity of TiO2-water nanofluids 200
4.4 Results and discussion of measurement of density 207
4.4.1 Results and discussion of density of CuO-water nanofluids 208
4.4.2 Results and discussion of density of Al2O3-water nanofluids 210
4.4.3 Results and discussion of density of TiO2-water nanofluids 214
4.5 Results and discussion of measurement of rheology 218
4.5.1 Results and discussion of rheology of CuO-water nanofluids 218
4.5.2 Results and discussion of rheology of Al2O3-water nanofluids 225
4.5.3 Results and discussion of rheology of TiO2-water nanofluids 236
4.6 Results and discussion of measurement of pressure drop 246
4.6.1 Results and discussion of pressure drop of CuO–water nanofluids 246
4.6.2 Results and discussion of pressure drop of Al2O3–water nanofluids 255
4.6.3 Results and discussion of pressure drop of TiO2–water nanofluids 267
4.7 Results and discussion of measurement of heat convection coefficient 277
4.7.1 Results and discussion of heat convection coefficient of CuO-water nanofluids 278
4.7.2 Results and discussion of heat convection coefficient of Al2O3-water nanofluids 286
4.7.3 Results and discussion of heat convection coefficient of TiO2-water nanofluids 293
4.8 Results and discussion of the quantity of heat exchange 300
4.8.1 Results and discussion of the quantity of heat exchange of CuO-water nanofluids 301
4.8.2 Results and discussion of the quantity of heat exchange of Al2O3-water nanofluids 309
4.8.3 Results and discussion of the quantity of heat exchange of TiO2-water nanofluids 317
4.9 Results and discussion of measurement of de-algae by photocatalyst 325
4.9.1 Results of and discussion manufacture for TiO2 photocatalytic film on stainless steel plate 325
4.9.2 Results and discussion of measurement of de-algae by TiO2 photocatalyst 327
4.10 Analysis of experimental uncertainty 331
Chapter 5 CONCLUSIONS AND FUTURE STUDY 339
5.1 Conclusions 339
5.2 Future studies 348
REFERENCES 351
LIST OF SYMBOLS 372
APPENDIX 376
Appendix A Specifications of commercial nanoparticles 376
Appendix B Instrument specifications 378
AUTOBIOGRAPHY 381
PUBLICATION LIST 382
[1] R. P. Feynman, “There''s Plenty of Room at the Bottom”, Annual Meeting of The American Physical Society, Dec., 29, 1959.
[2] M. C. Roco, R. S. Williams, and P. Alivisatos, “Vision for Nanotechnology R&D, in the Next Decade”, IWGN Workshop Report, Sep., 1999.
[3] NSTC, Nanotechnology - shaping the world atom by atom, Washington: Brochure for public, D.C., 1999.
[4] H. Froes and C. Suryanarayana, “JOM: the Journal of the Minerals,” Metals & Materials Society, 1989, p.12.
[5] L. D. Chang and C. M. Mou, Nanomaterials and Nsnostructure, Peking: Science Press, 2001.
[6] R. Birringer, “Nanocrystalline Materials,” Materials Science and Engineering A, 117, 1989, pp.33-43.
[7] R. P. Andres and R. S. Arerback, “Research Opportunities on Clusters and Cluster-assembled Materials—A Department of Energy Council on Materials Science Panel Report,” J. Mater. Res., 4(3), 1989, pp.704-744.
[8] M. S. Lai, "Interoduction of super-minute particle material fabrication technology,” Bulletin of Powder Metallurgy Association, 19(4), 1994, pp.247-256.
[9] P. S. Su, Technology about supermicroparticle materials, Taipei: Fuhan Press, 1989.
[10] M. A. Kastner, “Artificial atoms,” Physics Today, 46, 1993, pp.24-31.
[11] S. U. S. Choi, D. A. Siginer, and H. P. Wang, “Enhancing thermal conductivity of fluids with nanoparticles,” Developments and Applications of Non-Newtonian Flows, ASME, New York, FED-231/MD-66, 1995, pp.99-105.
[12] National Nanotechnology Initiative: Leading to the Next Industrial Revolution? A Report by the Interagency Working Group on Nanoscience, Engineering and Technology, Committee on Technology National Science and Technology Council, U.S.A., Feb., 2000, Washington D.C.
[13] National Science Council, National Science and Technology Program for Nanoscience and Nanotechnology, 2003.
[14] H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, “Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate,” Journal of Crystal Growth, 45, 1978, pp. 495-500.
[15] M. Wagener, B.S. Murty, and B. Gunther, “Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids,” in: S. Komarnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, 457, Materials Research Society, Pittsburgh, PA, 1997, pp.149-154.
[16] J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity through the development of nanofluids,” in Nanophase and Nanocomposite Materials II, edited by S. Komarneni, J. C. Parker, and H. J. Wollenberger, Mater Res. Soc. Symp. Proc. 457, Warrendale, PA, 1997, pp.9-10.
[17] H. Zhu, Y. Lin, and Y. Yin, “A novel one-step chemical method for preparation of copper nanofluids,” Journal of Colloid and Interface Science, 227, 2004, pp.100–103.
[18] C. H. Lo, T. T. Tsung, and L. C. Chen, “Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS),” Journal of Crystal Growth, 277 (1-4), 2005, pp.636-642.
[19] C. H. Lo, T. T. Tsung, and L. C. Chen, “Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS),” JSME International Journal, Series B: Fluids and Thermal Engineering, 48(4), 2006, pp.750-755.
[20] C. H. Lo, Fabrication and analysis of Cu-based nanofluids prepared by continuously controlled submerged arc nano synthesis system, Ph.D.’s thesis, Graduate Institute of Mechanical and Electrical Engineering, NTUT., Taiwan, R.O.C., 2006
[21] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, 121, 1999, pp.280-289.
[22] X. Wang, X. Xu, and S. U. S. Choi, “Thermal conductivity of nanoparticle–fluid mixture,” Journal of Thermophysics and Heat Transfer, 13(4), 1999, pp. 474-480.
[23] S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids,” International Journal of Thermal Sciences, 44(4), 2005, pp.367-373.
[24] D. Wen, and Y. Ding, “Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids),”IEEE TRANSACTIONS ON NANOTECHNOLOGY, 5(3), 2006, pp.220-227.
[25] Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Transfer, 21, 2000, pp.58-64.
[26] Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park, and J. K. Lee, “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” Current Appl. Phys. 6(6) ,2006, pp.1068-1071.
[27] J. Kestin and W.A. Wakeham, “A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements,” Physica A, 92, 1978, pp.102-116.
[28] X. Wang, X. Xu, and S. U. S. Choi, “Thermal conductivity of nanoparticle–fluid mixture,” J. Therm. Phys. Heat Transfer, 13, 1999, pp.474-480.
[29] S. K. Das, N. Putta, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” ASME Trans. J. Heat Transfer, 125, 2003, pp.567-574.
[30] W. Roetzel, S. Prinzen, and Y. Xuan, “Measurement of thermal diffusivity using temperature oscillations,” in: C. Cremers, H. Fine (Eds.), Thermal Conductivity, 21, Plenum Press, New York and London, 1990, pp.201-207.
[31] H. Xie, J. Wang, T. Xi, and Y. Liu, “Study on the thermal conductivity of SiC nanofluids,” Journal of the Chinese Ceramic Society, 29(4), 2001, pp. 361– 364.
[32] H. Xie, J. Wang, T. Xi, and Y. Liu, “Thermal conductivity of suspensions containing nanosized SiC particles,” International Journal of Thermophysics, 23 (2), 2002, pp.571-580.
[33] J. Kim, Measurements of the thermal conductivity of pure and mixed refrigerants in the liquid and gas phase by the transient hot-wire method, Master Thesis, Seoul National University, 1994
[34] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman “Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transfer, 121, 1999, pp.280-289.
[35] C. S. Jwo, T. P. Teng, and H. Chang,“Experimental study on volume fraction and temperature dependence of thermal conductivity for Al2O3 nanofluids,” International Workshop on Nanostructured Materials proceeding, NANOMAT, Antalya, Turkey, D-235, 2006.
[36] Y. Nagasaka and A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” Journal of Physics E: Scientific Instruments, 14, 1981, pp.1435-1440.
[37] W. Czarnetzki and W. Roetzel, “Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity,” International Journal of Thermophysics, 16(2), 1995, pp.413-422.
[38] C. S. Jwo, T. P. Teng, C. J. Hung, and Y. T. Guo, “Research and development of measurement device for thermal conductivity of nanofluids , ” Journal of Physics: Conference Series, 13, 2005, pp.55-58.
[39] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles),” Netsu Bussei (Japan), 7(4), 1993, pp.227-233.
[40] Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat and Fluid Flow, 21, 2000, pp.58-64.
[41] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, 78(6), 2001, pp.718-720.
[42] R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous twocomponent systems,” I&EC Fundam., 1, 1962, pp. 182-191.
[43] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, 91(7), 2002, pp.4568-4572.
[44] M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, and J. Fischer, “Carbon nanotube composites for thermal management,” Applied Physics Letters, 80(15), 2002, pp.2767-2769.
[45] M. Llaguno, J. Hone, A. Johnson, and J. Fischer, “Thermal conductivity of single-wall carbon nanotubes: diameter and annealing dependence,” in: H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.), AIP Conference Proceedings, 591, Woodbury, New York, 2001.
[46] H. E. Patel, S. K. Das, and T. Sundararagan, A. S. Nair, B. Geoge, T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Applied Physics Letters, 83, 2003, pp.2931-2933.
[47] H. Xie, H. Lee, W. Youn, and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” Journal of Applied Physics, 94(8), 2003, pp.4967-4971.
[48] E. S. Choi, J. S. Brooks, D. L. Eaton, M. S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen, “Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing,” Journal of Applied Physics, 94(9), 2003, pp.6034-6039.
[49] M. J. Assael, C. F. Chen, I. N. Metaxa, and W. A.Wakeham, “Thermal conductivity of suspensions of carbon nanotubes in water,” 15th Symposium on Thermophysical Properties, National Institute of Standards, University of Colorado, Boulder, USA, 2003.
[50] M. J. Assael, C. F. Chen, I. N. Metaxa, and W. A.Wakeham, “Thermal conductivity of suspensions of carbon nanotubes in water,” International Journal of Thermophysics, 25(4), 2004, pp.971-985.
[51] D. Wen and Y. Ding, “Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids),” Journal of Thermophysics and Heat Transfer, 18(4), 2004, pp.481-485.
[52] J. W. Huang, The thermal property of nanofluid, Master’s thesis, Graduate Institute of Power Mechanical Engineering, NTHU., 2004.
[53] M. J. Assael, I. N. Metaxa, J. Arvanitidis, D. Christofilos, and C. Lioutas, “Thermal conductivity enhancement in aqueous suspensions of carbon multiwalled and double-walled nanotubes in the presence of two different dispersants,” International Journal of Thermophysics, 26(3), 2005, pp.647-664.
[54] Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” International Journal of Heat and Mass Transfer, 49 (1–2), 2005, pp.240-250.
[55] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nano-tube suspensions,” Applied Physics Letters, 79, 2001, pp.2252-2254.
[56] M. S. Liu, M. C. C. Lin, I. T. Huang, and C. C. Wang, “Enhancement of thermal conductivity with carbon nanotube for nanofluids,” International Communications in Heat and Mass Transfer, 32 (9), 2005, pp.1202-1210.
[57] T. K. Hong, H. S. Yang, and C. J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids,” Journal of Applied Physics, 97(6), 2005, pp.1-4.
[58] C. J. Hung, The thermal property and application of copper oxide nanofluids, Master’s thesis, Graduate Institute of Refrigeration and Air Condition Engineering, NTUT., 2005.
[59] K. S. Hong, T. K. Hong, and H. S. Yang, “Thermal conductivity of fe nanofluids depending on the cluster size of nanoparticles,” Applied Physics Letters, 88(3), 2006, pp.31901.
[60] C. H. Li and G. P. Peterson, “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids),” Journal of Applied Physics, 99 (8), 2006, 084314.
[61] S. A. Putnam, D. G. Cahill, P.V. Braun, Z. Ge, and R. G. Shimmin, “Thermal conductivity of nanoparticle suspensions,” Journal of Applied Physics, 99(8), 2006, 084308.
[62] Y. T. Guo, Analysis and experimental research on Al2O3 nanofluids of thermal properties, Master’s thesis, Graduate Institute of Refrigeration and Air Condition Engineering, NTUT., 2006.
[63] P. Vadasz, “Heat Conduction in Nanofluid Suspensions,” Journal of Heat Transfer, 128, 2006, pp.465-477.
[64] M. S. Liu, M. C. C. Lin, I. T. Huang, and C. C. Wang, “Enhancement of Thermal Conductivity with CuO for Nanofluids,” Chem. Eng. Technol., 29(1), 2006, pp.72-77.
[65] Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park, and J. K. Lee’ “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” Current Applied Physics, 6, 2006, pp.1068-1071.
[66] D. H. Yoo, K. S. Hong, and H. S. Yang, “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochimica Acta, 455, 2007, pp.66–69
[67] C. H. Li and G. P. Peterson, “The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids,” Journal of Applied Physics, 101, 2007, 044312.
[68] L. S. Lai, Research thermal properties and application for TiO2 nanofluids, Master’s thesis, Graduate Institute of Energy and Refrigerating Air-Conditioning Engineering, NTUT., 2007.
[69] X. Zhang, H. Gu, and M. Fujii, “Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles,” Experimental Thermal and Fluid Science, 31, 2007, pp.593-599.
[70] C. S. Jwo, H. Chang, T. P. Teng, M. J. Kao, and Y. T. Guo, “A Study on the Effects of Temperature and Volume Fraction on Thermal Conductivity of Copper Oxide Nanofluid ,” Journal of Nanoscience and Nanotechnology, 7(6), 2007, pp.2161-2166.
[71] J. C. Maxwell, A Treatise on Electricity and Magnetism, second ed., Clarendon Press, Oxford, UK, 1881.
[72] D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, “I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen,” Annalen der Physik, Leipzig, 24, 1935, pp. 636-679.
[73] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, 45, 2002, pp.855-863.
[74] Y. Xuan, Q. Li, and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AICHE Journal, 49 (4), 2003, pp.1038-1043.
[75] B. X. Wang, L. P. Zhou, and X. F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” Int. J. Heat and Mass Transfer, 46(14), 2003, pp.2665-2672.
[76] Q. Z. Xue, “Model for effective thermal conductivity of nanofluids,” Physics Letters A, 307(5-6), 2003, pp.313-317.
[77] W. Yu and S. U. S Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,” Journal of Nanoparticle Research, 5, 2003, pp.167-171.
[78] C. W. Nan, Z. Shi, and Y. Lin, “A simple model for thermal conductivity of carbon nanotube-based composites,” Chemical Physics Letters, 375(5-6), 2003, pp.666-669.
[79] W. Yu and S.U.S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model,” Journal of Nanoparticle Research, 6(4), 2004, pp.355-361.
[80] J. Kim, Y. T. Kang, and C. K. Choi, “Analysis of convective instability and heat transfer characteristics of nanofluids,” Physics of Fluids, 16(7), 2004, pp.2395-2401.
[81] D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, “Model for heat conduction in nanofluids,” Physical Review Letters, 93(14), 2004, 144301.
[82] P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan, and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,” Journal of Applied Physics, 95(11), 2004, pp.6492-6494.
[83] S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Applied Physics Letters, 84, 2004, pp.4316-4318.
[84] J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” Journal of Nanoparticle Research, 6(6), 2004, pp.577-588.
[85] C. W. Nan, G. Liu, Y. Lin, and M. Li, “Interface effect on thermal conductivity of carbon nanotube composites,” Applied Physics Letters, 85, 2004, pp.3549-3551.
[86] Q. Xue and W. M. Xu, “A model of thermal conductivity of nanofluids with interfacial shells,” Materials Chemistry and Physics, 90(2-3), 2005, pp.298-301.
[87] H. Xie, M. Fujii, and X. Zhang, “Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle–fluid mixture,” International Journal of Heat and Mass Transfer, 48(14), 2005, pp.2926-2932.
[88] Q. Z. Xue, “Model for thermal conductivity of carbon nanotube-based composites,” Physica B: Condensed Matter, 368 (1-4), 368, 2005, pp.302-307.
[89] C. S. Jwo and T. P Teng, “A simple model to estimate thermal conductivity of fluid with acicular nanoarticles,” Book of abstracts, 12th International Symposium on Metastable and Nano Materials (ISMANAM), Paris, France. PI-51, 2005.
[90] Q. Xue, “Model for the effective thermal conductivity of carbon nanotube composites,” Nanotechnology, 17(6), 2006, pp.1655-1660.
[91] L. Gao and X. F. Zhou, “Differential effective medium theory for thermal conductivity in nanofluids,” Physics Letters A, 348(3-6), pp.355-360.
[92] C. S. Jwo and T. P Teng, “A simple model to estimate thermal conductivity of fluid with acicular nanoarticles,” Journal of Alloys and Compounds, 434-435, 2007, pp.569-571.
[93] H. C. Brinkman, “The viscosity of concentrated suspensions andsolutions, ” J. Chem. Phys. 20, 1952, pp.571-581.
[94] A. Einstein, Investigation on the Theory of Brownian Motion, Dover, New York, 1956.
[95] B. C. Pak and Y. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, 11(2), 1998, pp. 151-170.
[96] J. M. Li, Z. L. Li, and B. X. Wang, “Experimental viscosity measurements for copper oxide nanoparticle suspensions,” Tsinghua Sci. Tech., 7(2), 2002, pp.198-201.
[97] S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” International Journal of Heat and Mass Transfer, 46 (5), 2003, pp.851-862.
[98] W. J. Tseng and K. C. Lin, “Rheology and colloidal structure of aqueous TiO nanoparticle suspensions,” Mater. Sci. Eng. A, 355, 2003, pp.186-192.
[99] Davalos-Orozco, “Hydrodynamic behavior of suspension of polar particles, ” Encyclopedia Surface Colloid Sci., 4, 2005, pp.2375-2396.
[100] K. S. Hwang, J. H. Lee, and S. P. Jang, “Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity,” International Journal of Heat and Mass Transfer, 50, 2007, pp.4003-4010.
[101] M. Okada and T. Suzuki, “Natural convection of water-fine particle suspension in a rectangular cell,” Int. J. Heat Mass Transfer, vol.40, 1997, pp.3201-3208.
[102] K. V. Liu, S. U. S. Choi, and K.E. Kasza,”Measurements of pressure drop and hest transfer in turbulent pipe flows of particulate slurries,” Argonne National Laboratory Report, ANL-88-15, 1988.
[103] S. Lee and S. U. S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems, 1996 International Mechanical Engineering Congress and Exhibition, Atlanta, USA, 1996.
[104] Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer, 43, 2000, pp.3701-3707.
[105] C. Kang, M. Okada, A. Hattori, and K. Oyama, “Natural convection of water–fine particle suspension in a rectangular vessel heated and cooled from opposing vertical walls (classification of natural convection in the case of suspension with a narrow-size distribution),” Int. J. Heat Mass Transfer, 44, 2001, pp.2973-2982.
[106] Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” ASME Journal of Heat Transfer, 125, 2003, pp.151-155.
[107] D. Faulkner, M. Khotan, and R. Shekarriz, “Practical design of a 1000 W/cm2 cooling system,” Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Institute of Electrical and Electronics Engineers Inc., San Jose, CA, United States, 2003, pp.223-230.
[108] H. T. Chien, C. I. Tsai, P. H. Chen, and P. Y. Chen, “Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid,” ICEPT 2003, Fifth International Conference on Electronic Packaging Technology, Proceedings (IEEE Cat. No.03EX750), IEEE, Shanghai, China, 2003, p.389.
[109] K. Khanafer, K. Vafai, and M. Lightstone, “Bouyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” International Journal of Heat and Mass Transfer, 46, 2003, pp.3639-3653.
[110] N. Putra, W. Roetzel, and S. K. Das, “Natural convection of nano-fluids, Heat and Mass Transfer,” 39(8-9), 2003, pp.775-784.
[111] D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, 47(24), 2004, pp. 5181.
[112] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, and P. H. Chen, “Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance,” Material Letters, 58, 2004, pp.1461-1465.
[113] S. E. B. Maiga, C. T. Nguyen, N. Galanis, and G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices and Microstructures, 35, 2004, pp.543-557.
[114] S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” International Journal of Heat and Fluid Flow, 26(4), 2005, pp.530-546.
[115] Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson, and G. Wu, “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow,” International Journal of Heat and Mass Transfe, 48(6), 2005, pp.1107-1116.
[116] D. Wen and Y. Ding, “Formulation of nanofluids for natural convective heat transfer applications,” International Journal of Heat and Fluid Flow, 26(6), 2005, pp.855-864.
[117] S. Heris, S. G. Etemad, and M. Esfahany, “Experimental investigation of oxide nanofluids laminar flow convective heat transfer, ” International Communications in Heat and Mass Transfer, 33(4), 2006, pp.529-535.
[118] H. B. Ma, C.Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S. Choi, and M. Tirumala, “Effect of nanofluid on the heat transport capability in an oscillating heat pipe,” Applied Physics Letters, 88(14), 2006, 143116.
[119] J. K. Kim, J. Y. Jung, and Y. T. Kang, “The effect of nano-particles on the bubble absorption performance in a binary nanofluid, ” Int. J. of Refrigeration, 29, 2006, pp.22-29.
[120] J. Buongiorno, “Convective transport in nanofluids,” Transactions of the ASME, 128, 2006, pp.240-250.
[121] C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system,” Applied Thermal Engineering, 27, 2007, pp.1501-1506.
[122] S. Zeinali Heris, M. Nasr Esfahany, and S.Gh. Etemad, “Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube,” Int. J. of Heat and Fluid Flow, 28, 2007, pp.203-210.
[123] R. Y. Chein and J. Chuang, “Experimental microchannel heat sink performance studies using nanofluids,” Int. J. of Thermal Sciences, 46, 2007, pp.57-66.
[124] R. B. Mansour, Ni. Galanis, and C. T. Nguyen, “Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids,” Applied Thermal Engineering, 27, 2007, pp.240-249.
[125] P. Keblinski1, J. A. Eastman, and D. G. Cahill, “Nanofluids for thermal transport,” Materials Today, 2005, pp.36-44.
[126] V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable and Sustainable Energy Reviews, 11, 2007, pp.512-523.
[127] X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, 46, 2007, pp.1-19
[128] H. Al-Ekabi, A. M. Draper, and P. De Mayo, “Carbon tetrabromide as an electron acceptor in heterogeneous photocatalysis ,” Can. J. Chem. 67, 1989, pp.1061-1064.
[129] H. Al-Ekabi, N. Serpone, E. Pelizzetti, C. Minero, R. B. Fox, and R. B. Draper, “Kinetic studies in heterogeneous photocatalysis. 2. TiO2-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4- chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media ,” Langmuir, 5, 1989, pp.250-255.
[130] J. Hecht, “Sunlight gives toxic waste a tanning,” New Sci., 1712, 1990, p.36.
[131] D. F. Oilis, E. Pelizzetti, and N. Serpone, “Destruction of water contaminants,” Environ. Sci. Technot., 25, 1991, pp.1523-1528.
[132] G. Al-Sayyed, J. C. D Oliveira, and P. Pichat, “Semiconductor- sensitized photodegradation of 4-chlorophenol in water ,” J. Photochem. Photobiol. A 58, 1991, pp.99-114.
[133] P. V. Kamat, “Photochemistry on Nonreactive (Semiconductor) Surfaces,” Chem. Rev. 93, 1993, pp.267-300.
[134] O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical processes for water treatment,” Chem. Rev. 93, 1993, pp.671- 698.
[135] D. M. Blake ,Bibliography of work on the photocatalytic removal of hazardous compounds from water and air, National Technical Information Service: US Department of Commerce, Springfield, 1994.
[136] R. W. Matthews, In Photochemical Conversion and Storage of Solar Energy, E. Pelizzetti and M. Schiavello (Eds). Kluwer, Dordrecht, 1991.
[137] C. Minero, E. Pelizzetti, S. Malato, and J. Blanco “Large solar plant photocatalytic water decontamination: degradation of pentachlorophenol, ” Chemusphere, 26( 12), 1993, pp.2103-2119.
[138] R. J. Kuhler, G. A. Santo, T. T. Caudill, E. A. Betterton, and R. G. Arnold, “Photoreductive dehalogenation of bromoform with titanium-dioxide cobalt macrocycle hybrid catalysts ,” Environ. Sci. Technol., 27, 1993, pp.2104-2111.
[139] D. Bahnemann, “ Photocatalytic water treatment: solar energy applications,” Solar Energy, 77, 2004, pp.445-459.
[140] S. M. Rodriguez, C. Richter, and J. B. Galvez, “ Photocatalytic degradation of industrial residual waters ,” Solar Energy, 56(5), 1996, pp.401-410.
[141] K. Tanaka, K. Abe, and T. Hisanaga, “Photocatalytic water treatment on immobilized TiO2 combined with ozonation,” Jonmal of Photochemistry and Photobiology A: Chemistry, 101, 1996, pp.85-87.
[142] L. Duczmal and A. Sobczynski, “Photocatalytic water purification: destruction of resorcinol by irradiated titania ,” React. Kmet. Catal. Lett., 66(2), 1999, pp.289-295.
[143] I. Ilisz, A. Dombi, K. Mogyorósi, and I. Dékány, “Photocatalytic water treatment with different TiO2 nanoparticles and hydrophilic/hydrophobic layer silicate adsorbents,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 230, 2004, pp.89-97.
[144] T. E. Doll and F. H. Frimmel, “Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues–evaluation of the long-term stability of the photocatalytic activity of TiO2 ,” Water Research, 39, 2005, pp.847-854.
[145] C. H. Ao, M. K. H. Leung, R. C. W. Lam, D. Y.C. Leung, L. L. P. Vrijmoed, W.C. Yam, and S.P. Ng, “Photocatalytic decolorization of anthraquinonic dye by TiO2 thin film under UVA and visible-light irradiation ,” Chemical Engineering Journal, 129, 2007, pp.153-159.
[146] J. Villasenor and H. D. Mansilla, “Effect of temperature on kraft black liquor degradation by ZnO-photoassisted catalysis,” J. Photochem. Photobiol., A93, 1996, pp.205-209.
[147] C. Richard, F. Bosquet, J.F. Pilichowski, and J. Photochem. “Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions: effect of substrate concentration on the distribution of products,” Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1997, pp.45-49.
[148] M.D. Driessen, T.M. Miller, and V.H. Grassian, “Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy,” Journal of Molecular Catalysis A: Chemical, 131(1-3), 1998, pp.149–156.
[149] V. Dijken, A. H. Janssen, M. H. P. Smitsmans, D. Vanmaekelbergh, and K. Meijerink, “Size-Selective Photoetching of Nanocrystalline Semiconductor Particles,” Chem. Mater., 10(11), 1998, pp.3513-3522.
[150] S. Neppolian, B. Sakthivel, M. Arabindoo, V. Palanichamy, and J. Murugesan, “Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts,” J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 34 (9), 1999,pp. 1829-1838.
[151] M.C. Yeber, J. Rodríguez, J. Freer, N. Durán, and H.D. Mansilla, “Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO,” Chemosphere, 41(8), 2000, pp.1193-1197.
[152] C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Applied Catalysis A: General, 304, 2006, pp.55-61.
[153] F. S. Li, P. Cui, Y. Yang, and H. Jiang, The treatment technology and application of nicrometer-nanometer powders, Beijing: National defense industry press, 2002, pp.15-151.
[154] C. S. Jwo and T. P. Teng, “Experimental study on thermal properties of brines containing nanoparticles,” Rev.Adv.Mater.Sci., 10(1), 2005, pp.79-83.
[155] C. S. Jwo, D. C. Tien, T. P. Teng, H. Chang, T. T. Tsung, C. Y. Liao, and C. H. Lin, “Preparation and UV characterization of TiO2 nanoparticles synthesized by SANSS,” Rev.Adv.Mater.Sci., 10(3), 2005, pp.283-288.
[156] T. E. Philip, R. P. Mukund, A. B. Maria, and B. Bedri, “Theoretical models of the electrical discharge machining process. Ⅲ. The variable mass, cylindrical plasma model,” J. Appl. Phys., 73(11), 1993. pp.7900-7909.
[157] A. Singhal, G. Skandan, N. Glumac, and B. H. Kear, “Minizing aggregation effects in flame synthesized nanoparticles,” Scripta Materialia, Volume 44(8-9), 2001, pp.2203-2207.
[158] P. Mulvaney, Zeta Potential and Colloid Reaction Kinetics, Weinheim: WILEY-VCH, 1998.
[159] F. Ni, G. Q. Gu, and K. M. Chen, “Effective thermal conductivity of nonlinear composite media with contact resistance,” Int. J. Heat Mass Transfer, 40, 1997, pp.943-949.
[160] J.R. Henderson and F. van Swol, “On the interface between a fluid and a planar wall: theory and simulations of a hard sphere fluid at a hard wall,” Mol. Phys., 51, 1984, pp.991-1010.
[161] C. J. Yu, A. G. Richter, A. Datta, M. K. Durbin, and P. Dutta, “Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study,” Physica B, 283, 2000, pp.27-31.
[162] G. H. Geiger, and D .R. Poirier, Transport Phenomena in Metallurgy, Addison-Wesley Reading, PA. 1973, p. 190.
[163] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York. 1976. p. 494.
[164] A. A. Joshi and A. Majumdar, “Transient ballistic and diffusive phonon heat transport in thin films,” J. Appl. Phys., 74, 1993, pp.31-39.
[165] L. Ye, J. Liu, P. Sheng, J. S. Huang, and D. A. Weitz, “Sound propagation in colloidal systems,” J. Physique IV, 3 (Cl), 1993, pp.183–196.
[166] F. J. Wasp, Solid+Liquid Flow Slurry Pipeline Transportation, Trans. Pub., Berlin, 1977.
[167] L. P. Zhou and B. X. Wang, “Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady state method,” in: Ann. Proc. Chinese Eng. Thermophys., Shanghai, 2002, pp. 889-892 (in Chinese).
[168] Y. Ren, H. Xie, and A. Cai , “Effective thermal conductivity of nanofluids containing spherical nanoparticle”,J. Phys. D: Appl. Phys., 38, 2005, pp.3958-3961.
[169] R. W. Fox and A. T. Mcdonald, Introduction to fluid mechanics, 5th ed. John Wiley & Sons, Inc., New York, 1998.
[170] B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of fluid mechanics, 2th ed., John Wiley & Sons, Inc., New York, 1995.
[171] A. R. Challoner and R.W. Powell, “Thermal conductivities of liquids: new determination for seven liquids and appraisal of existing values,” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 238(1212), 1956, pp. 90-106.
[172] F.P. Incropera and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed., Jiley, New York, 1996, pp.844-846.
[173] W. A. Wakeham, A. Nagashime, and J. V. Sengers, Measurement of the Transport Properties of Fluids, Blackwell, Oxford, 1991.
[174] Decagon Devices, Inc., KD2 thermal properties analyzer user’s manual, version 1.3, 2004.
[175] R. L. Mott, Applied fluid mechanics, Macmillan, Inc., 1994.
[176] W. F. Stoecker and J. W. Jones, Refrigeration and air conditioning, McGraw-Hill, Inc., 1982.
[177] ASHARE, 1997 ASHRAE Handbook-Fundamentals, ASHRAE Inc., 1997.
[178] P. K. Swamee and A. K. Jain, “Explicit equation for pipe-flow problem,” Journal of the hydraulics division, 102(HY5), 1976, pp.657-664.
[179] L. F. Moody, “Friction factor for pipe flow,” Transactions of ASME, 66(8), 1944, pp.671-684.
[180] Y. A. Cengel and M. A. Boles, Thermodynamics – An engineering approach, 4th ed., McGraw-Hill, Inc., 1998.
[181] M. D. Burghardt and J. A. Harbach, Engineering thermodynamics, 4th ed., Haper Collins, Inc., 1986.
[182] A. Bejan, Advanced engineering thermodyanmics, 3th ed., John Willy & Songs, Inc., New York, 2006.
[183] Y. A. Cengel, Heat transfer – A practical approach, McGraw-Hill, Inc., New York, 1998.
[184] ASHRAE, Psychrometric analysis, Ver. 3.1.0, ASHRAE Inc.
[185] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, 1972, p.37.
[186] W. Stumn, Chemistry of the Solid-Water Interface, John Wiley & Sons, Inc., New York, 1992.
[187] R. G. Zepp, “Factors Affecting the Photochemical Treatment of Hazardous Waste,” Environmental Science & Technology, 22(3), 1988, pp.256-257.
[188] A. Fujishima and K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis Fundamentals and Application, BKC, Inc.,1999, pp.125-128.
[189] M. R. Hoffmann, S. T. Martin, W. Choi, and D.W Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chemical Reviews, 20, 1995, pp.69-95.
[190] R. W. Legan, “Ultraviolet light takes on CPI role,” Chemical Engineering, 1982, pp.95-100.
[191] J. F. Wu, C. H. Hung, and C. S. Yuan, “Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor, ” Journal of Photochemistry And Photobiology A: Chemistry, 170(3), 2005, pp.299-306.
[192] T. N. Obee and R. T. Brown, “TiO2 Photocatalysis for Indoor Air Applications: Effects of Water vapor and Trace Contaminant Levels on Oxidation Rates of Formaldehyde, Toluene and 1, 3-Butadiene,” Environ. Sci. & Technol., 29, 1995, pp.1223-1231.
[193] G. B. Raupp and C. T. Junio, “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci., 72, 1993, pp.321-327.
[194] L. A. Dibble and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,” ES&T, 26, 1992, pp.492-495.
[195] W. F. Jardim, R. M. Aiberic, M. K. Takiyama, and C. P. Huang, Gas-phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2, The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
[196] N. J. Peill, and M. R. Hoffmann , “Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor,” ES&T, 30, 1996, pp.2806-2812.
[197] L. Rideh, A. Wehrer, D. Ronze, and A. Zuolalian, “Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous Suspension: Modeling of Reaction Rate,”Ind. Eng. Chem. Res., 36, 1997, pp. 4712-4718.
[198] X. Fu, L. A. Clark, W. A. Zenlter, and M. A. Anderson, “Effects of Reaction Temperature and Water Vapor Content on The Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal of Photochemistry and Photobiology, 97, 1996, pp.181-186.
[199] A. V. Vorontsov, E. N. Kurkin, and E. N. Savinov, “Study of TiO2 Deactivation during Gaseous Acetone Photocatalytic Oxidation,” Journal of Catalysis, 186, 1999, pp.318-324.
[200] A. W. Jacoby, D.M. Blake, J. A. Fennell, J. E. Boulter, and L. M. Vargo, “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” J.A&WMA, 46, 1996, pp.891-898.
[201] C. C. Chen, A study of testing the nanocatalyst decomposition efficiency of NH3, Master’s thesis, Graduate Institute of Air-Conditioning and Refrigeration Engineering, NTUT., 2006.
[202] S. C. Ho, Research on decomposition of formaldehyde by nanocatalyst in the air conditioning system, Master’s thesis, Graduate Institute of Energy and Refrigerating Air-Conditioning Engineering, NTUT., 2007.
[203] M. A. Anderson, A. Yamazaki-Nishida, and S. Cervera-March, in “Photocatalytic Purification and Treatment of Water and Air,” D. F. Ollis, H. Al- Ekabi, Eds., Elsevier: Amsterdam, 1993, pp.405
[204] C. S. Jwo, T. P. Teng, and C. C. Chen, Photocatalytic Elements for water treatment, ROC Patent (applying), 2007.
[205] P. Fay “Oxygen Relations of Nitrogen Fixation in Cyanobacteria,” Microbiol. Rev., 56(2), 1992, pp.340-373.
[206] R. Y. Stanier and G. Cohen-Bazire, “Phototrophic Prokaryotes: The Cyanobacteria ,” Ann. Rev. Microbiol., 31, 1977, pp. 225-274.
[207] R. W. Castenholz and J. B. Waterbury, “Oxygenic Photosynthetic Bacteria,” In: J. T. Staley, M. P. Bryant, N. Pfennig, G. Holt, editors, Bergey''s Manual of Systematic Bacteriology, 1st ed., Williams & Wilkins, 3, 1989, pp.1711-1805.
[208] R. W. Castenholz, “Oxy genie Photosynthetic Bacteria,” In: Boone DR, Castenholz RW, editors, Bergey''s Manual of Systematic Bacteriology, 2nd ed., Springer. New York, 1, 2001, pp.473-487.
[209] B. Palenik, “Chromatic Adaptation in Marine Synechococcus Strins,” Appl. Environ. Microbiol., 67(2), 2001, pp.991-994.
[210] B. A. Whitton, Diversity, “Ecology, and Taxonomy of the Cyanobacteria,” In: N. H. Mann and N. G. Carr, editors, Photosynthetic Prokaryotes, N.Y. Plenum Press, 1992.
[211] D. Billi, M. G. Caiola, L. Paolozzi, and P. Ghelardini, “A Mathod for DNA Extraction from the Desert Cyanobacterium Chroococcidiopsis and Its Application to Identification of ftsZ,” Appl. Environ. Microbiol., 64, 1998, pp.4053-4056.
[212] T. D. Brock, D. W. Smith, and M. T. Madigan, Biology of Microorganisms, New Jersey: Prentice-Hall. Inc., Englewood Cliffs, 1994, pp.644-650.
[213] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe,” Int. J. of Heat and Mass Transfer,50(11-12), 2007, pp.2272-2281.
[214] S. Zeinali Heris, S. Gh. Etemad , and M. Nasr Esfahany, “Experimental investigation of oxide nanofluids laminar flow convective heat transfer,” International Communications in Heat and Mass Transfer, 33, 2006, pp.529-535.
[215] E. M. Pugh, and G. H. Winslow, The Analysis of Physical Measurements, Reading, MA: Addison-Wesley, 1966.
[216] E. O. Doebelin, Measurement Systems, 4th ed., New York: McGraw-Hill, 1990.
[217] E. P. Rood, and D. P. Telionis, “JFE Policy on Reporting Uncertainties in Experimental Measurements and Results,” Transactions of ASME, Journal of Fluids Engineering, 113(3), 1991, pp.313-314.
[218] H. W. Coleman, and W. G. Steele, Experimentation and Uncertainty Analysis for Engineers, New York: Wiley, 1989.
[219] J. P. Holman, Experimental Methods for Engineers, 5th ed., New York: McGraw-Hill, 1989.
[220] J. R. Yu, Investigation of Vapor Compression Cooling System for Electronic Elements, Master’s thesis, Department of Mechanical Engineering, College of Engineering, NTU., 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔