跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許育菁
研究生(外文):Yu-Jing Shiu
論文名稱:奈米流體熱性質與熱儲存性能之研究
論文名稱(外文):Investigation of Thermal Properties and Thermal Storage Performance for Nanofluids
指導教授:卓清松
口試委員:張合鍾清枝林鴻明
口試日期:2008-06-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:105
中文關鍵詞:奈米流體熱儲存三氧化二鋁乙二醇
外文關鍵詞:nanofluidsthermal storagealuminacopperethylene glycol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用二階合成法製備乙二醇系的三氧化二鋁(Al2O3/EG)與銅(Cu/EG)奈米流體,並以實驗研究法探討奈米流體在不同濃度與溫度條件之下,對其熱傳導係數、黏滯係數及流體密度的影響。並藉由熱對流性質量測實驗以瞭解奈米流體在管路中的壓降狀態及與總熱傳係數,最後利用冰球儲冷特性實驗,對於奈米流體應用於儲冰系統的可行性與性能進行評估。在熱傳導係數量測方面,以Cu/EG奈米流體的熱傳增進效果為最佳,在溫度30℃與重量濃度0.75%wt時,熱傳導係數可提升19.16%。在流體密度量測方面,濃度與流體密度皆呈現非線性的正比趨勢,且粒徑大小對於奈米流體密度的影響並不明顯。在黏滯係數量測方面,可以發現本研究所使用的奈米流體皆屬於牛頓流體,濃度與黏滯係數的關係皆呈現非線性正比趨勢,與溫度成反比的趨勢。在熱對流性質量測方面,若能改善奈米流體的懸浮性將能得到更加的熱傳效果,在本實驗-3℃的條件下,總熱傳係數最多可提升14.15%;15∼50℃的範圍下,對流係數最多可提升15.19%。而奈米流體於管路中的壓降情形與濃度、流量成正比關係,與溫度成反比關係,並確認傳統的壓降估算方程式無法準確預測奈米流體在管路中的壓降狀態。在冰球特性實驗應用研究方面,使用傳統鹵水要使單顆冰球結冰所需的時間大約需要3-4小時。而改用奈米流體後,在本研究所設定的條件下,最多可縮短12.8%的儲冰時間,因此可以預期未來在儲冰系統的實際使用上將可望達到節能與降低運轉費用與更佳的運轉效益。
本論文針對奈米流體進行相關基礎特性與應用的實驗研究,主要的貢獻除了在研究乙二醇系奈米流體在不同粒徑與材料的條件下,對其基本性質的比較外,更確認了奈米流體應用在儲冰系統上的可行性,上述研究成果希望能提供奈米流體熱傳領域的研究者進行相關研究時參考。
The study used two-step synthesis to prepare ethylene glycol based nanofluids with alumina (Al2O3/EG) and copper (Cu/EG) nanoparticles, and employed experimental research method to investigate the influence of nanofluid on its thermal conductivity coefficient, viscosity coefficient and fluid density under the conditions of different concentrations and temperatures. Through the measurement experiment of the thermal convection nature, the study understood the pressure reduction situation of nanofluids in the pipe, and obtained the thermal convection coefficient. Finally, through the experiment of coldness storage by ice-balls, the study evaluated the feasibility and performance of the application of nanofluids to ice storage system. Regarding the measurement of thermal conductivity coefficient, Cu/EG nanofluid has the best incremental effect of thermal conductivity. When the temperature is 30℃ and the weight concentration is 0.75% wt., the thermal conductivity coefficient can be enhanced by 19.16%. For the measurement of fluid density, there appears a non-linear positive proportion between concentration and fluid density. Besides, particle size does not have obvious influence on the density of nanofluid. As to the measurement of viscosity coefficient, it is found that all the nanofluids used by the study belong to Newtonian fluid. There is the trend of a non-linear positive proportion between concentration and viscosity coefficient, and the trend of an inverse proportion between concentration and temperature. Regarding the measurement of thermal convection nature, if the suspension performance of nanofluid can be improved, a better thermal convection effect can be achieved. In this experiment, under the temperature condition of -3℃, the thermal convection coefficient can be increased by 14.15%.Within the range of 15∼50℃, the convection coefficient can be increased by 15.19% maximum. The pressure reduction of nanofluid in the pipe is positively proportional to concentration and flow, but inversely proportional to temperature. The traditional estimation equation of pressure reduction cannot accurately predict the pressure reduction situation of nanofluid inside the pipe. As to the experiment of ice-ball properties for application research, it takes around 3-4 hours to make a single frozen ice-ball by using the traditional brine. After the use of brine is changed to be nanofluid, under the conditions preset by the study, the ice storage time can be shortened by 12.8% maximum. Hence, it is predicted that the actual use of nanofluid in ice storage system in future will achieve the effects of energy conservation, reduction of operation expense, and better operation performance.
This research paper focused on nanofluid to carry out the experimental studies of the related foundational properties and application. The main contribution of the paper not only includes the comparison of the basic nature of nanofluids in ethylene glycol (EG) series during the research of these nanofluids under the conditions of different particle sizes and materials, but also confirms the feasibility of applying nanofluid to ice storage system. It is hoped that the above research results can provide a reference for the researchers studying the related realm of thermal conductivity of nanofluids.
目 錄

摘 要 i
ABSTRACT iii
誌謝 vi
目錄 viiii
表目錄 xix
圖目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 3
1.4 文獻回顧 4
1.4.1 基本性質量測實驗 4
1.4.2 應用研究 8
第二章 理論分析 11
2.1 奈米顆粒的製備方法 11
2.2 奈米流體的製備方法 13
2.3 材料檢測方法 14
2.4 材料特性 15
2.5 奈米流體的熱傳增進機制與懸浮穩定性 16
2.5.1 布朗運動與凡得瓦爾力 16
2.5.2 固液介面層效應 19
2.5.3 聲子彈道理論 20
2.5.4 表面電位與分散及懸浮穩定性的關係 22
2.6 基本性質量測實驗 23
2.6.1 熱傳導係數 23
2.6.2 熱擴散係數 27
2.6.3 密度及比熱 28
2.6.4 熱容量 29
2.6.5 黏滯係數 29
2.7 應用研究 30
2.7.1 壓降 30
2.7.2 熱對流係數 31
2.7.3 儲冰式空調系統 32
第三章 研究方法 34
3.1 樣本製備與流體性質檢測 34
3.1.1 樣本製備 34
3.1.2 流體性質檢測 35
3.2 基本性質量測實驗 36
3.2.1 熱傳導係數量測實驗 37
3.2.2 流體密度量測實驗 38
3.2.3 黏滯係數量測實驗 39
3.3 應用研究 41
3.3.1 熱對流性質量測實驗 42
3.3.2冰球儲冷特性實驗 43
第四章 結果與討論 45
4.1 流體性質檢測 45
4.2基本性質量測實驗 52
4.2.1 熱傳導係數量測實驗 52
4.2.2 流體密度量測實驗 59
4.2.3 黏滯係數量測實驗 63
4.3 應用研究 69
4.3.1 熱對流性質量測實驗 69
4.3.2冰球儲冷特性實驗 83
第五章 結論 85
參考文獻 87
附錄一 96
附錄二 98
符號彙表 102
參考文獻

[1]R. P. Feynman, “There''s Plenty of Room at the Bottom”, Annual Meeting of The American Physical Society, Dec., 29, 1959.
[2]何鎮揚、陳雅玲、廖家榮,「奈米科技交響曲-化學篇」,國立台灣大學出版中心,2004。
[3]H. Froes and C. Suryanarayana, “JOM: the Journal of the Minerals,” Metals & Materials Society, 1989, pp. 12.
[4]L. D. Chang and C. M. Mou, Nanomaterials and Nsnostructure, Peking: Science Press, 2001.
[5]R. Birringer, “Nanocrystalline Materials,” Materials Science and Engineering A, vol.ll7, 1989, pp. 33-43.
[6]R. P. Andres and R. S. Arerback, “Research Opportunities on Clusters and Cluster-assembled Materials—A Department of Energy Council on Materials Science Panel Report,” J. Mater. Res., vol.4, no.3, 1989, pp. 704-744.
[7]羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,「奈米科技導論」,全華科技圖書股份有限公司,2003。
[8]郭正次、朝春光,「奈米結構材料科學」,全華科技圖書股份有限公司,2004。
[9]S. U. S. Choi, D. A. Siginer, H. P. Wang, “Enhancing thermal conductivity of fluids with nanoparticles,” Developments and Applications of Non-Newtonian Flows, ASME, 231/MD- Vol. 66, 1995, pp. 99-105.
[10]S. Lee, S. U. S. Choi, S. Li and J. A. Eastman “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, vol.121, 1999, pp. 280-289.
[11]X. Wang, X. Xu, S. U. S. Choi, “Thermal conductivity of nanoparticle–fluid mixture,” Journal of Thermophysics and Heat Transfer, 13 (4), 1999, pp. 474-480.
[12]H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles),” Netsu Bussei (Japan), 7(4), 1993, pp. 227-233.
[13]J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, 78 (6), 2001, pp. 718-720.
[14]H. Xie, J. Wang, T. Xi, Y. Liu, “Study on the thermal conductivity of SiC nanofluids,” Journal of the Chinese Ceramic Society, 29 (4), 2001, pp. 361-364.
[15]H. Xie, J. Wang, T. Xi, Y. Liu, “Thermal conductivity of suspensions containing nanosized SiC particles,” International Journal of Thermophysics, 23 (2), 2002, pp. 571-580.
[16]R. L. Hamilton, O. K. Crosser, “Thermal conductivity of heterogeneous twocomponent systems,” I&EC Fundam, 1, 1962, pp. 182-191.
[17]H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, 91 (7), 2002, pp. 4568-4572.
[18]S. K. Das, N. Putta, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” ASME Trans. J. Heat Transfer, 125, 2003, pp. 567-574.
[19]H. E. Patel, S. K. Das, and T. Sundararagan, A. S. Nair, B. Geoge, T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Applied Physics Letters, 83, 2003, pp. 2931-2933.
[20]M. S. Liu, M. C. C. Lin, I. T. Huang, C. C. Wang, “Enhancement of thermal conductivity with carbon nanotube for nanofluids,” International Communications in Heat and Mass Transfer, 32 (9), 2005, pp. 1202-1210.
[21]T. K. Hong, H. S. Yang, C. J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids,” Journal of Applied Physics, 97 (6), 2005, pp. 1-4.
[22]M. S. Liu, M. C. C. Lin, I. T. Huang and C. C. Wang, “Enhancement of Thermal Conductivity with CuO for Nanofluids,” Chem. Eng. Technol., 29, No. 1, 2006, pp. 72-77.
[23]C. H. Li and G. P. Peterson, “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids),” Journal of Applied Physics, 99 (8), 2006, 084314.
[24]D. H. Yoo, K. S. Hong, H. S. Yang, “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochimica Acta, 455, 2007, pp. 66-69
[25]H. C. Brinkman, “The viscosity of concentrated suspensions andsolutions,” J. Chem. Phys. 20, 1952, pp. 571-581.
[26]A. Einstein, Investigation on the Theory of Brownian Motion, Dover, New York, 1956.
[27]S. E. B. Maiga, C. T. Nguyen, N. Galanis, and G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices and Microstructures, 35, 2004, pp. 543-557.
[28]S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” International Journal of Heat and Fluid Flow, 26(4), 2005, pp. 530-546.
[29]Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson, and G. Wu, “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow,” International Journal of Heat and Mass Transfer, 48(6), 2005, pp. 1107-1116.
[30]S. Heris, S. G. Etemad, and M. Esfahany, “Experimental investigation of oxide nanofluids laminar flow convective heat transfer, ” International Communications in Heat and Mass Transfer, 33(4), 2006, pp. 529-535.
[31]C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system,” Applied Thermal Engineering, 27, 2007, pp. 1501-1506.
[32]郭清癸,黃俊傑,牟中原,「金屬奈米粒子的製造」,物理雙月刊,23卷6期,2001。
[33]馬振基,「奈米材料科技原理與應用」,臺北,全華科技圖書股份有限公司,2003。
[34]張立德、牟季美,「納米材料和納米結構」,應用物理學叢書,科學出版社,北京,2001。
[35]Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Transfer, 21, 2000, pp. 58-64.
[36]M. Chopkar, S. Kumar, D.R. Bhandari, P.K. Das and I. Manna, “Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid,” Materials Science and Engineering B , 139, 2007, pp. 141-148.
[37]黃光照、李重賢、李美英、劉怡君,「奈米科技交響曲-物理篇」,國立台灣大學出版中心,2004。
[38]王延吉,「有機化工原料」,化學工業出版社,2004。
[39]http://www.iosh.gov.tw/msds.htm
[40]J. R. Henderson and F. van Swol, “On the interface between a fluid and a planar wall: theory and simulations of a hard sphere fluid at a hard wall,” Mol. Phys., 51, 1984, pp. 991-1010.
[41]ASHARE, 2005 ASHRAE Handbook-Fundamentals, ASHRAE Inc., 2005.
[42]http://en.wikipedia.org/wiki/Main_Page
[43]P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, 45, 2002, pp. 855-863.
[44]G. H. Geiger, and D .R. Poirier, Transport Phenomena in Metallurgy, Addison-Wesley Reading, PA. 1973, pp. 190.
[45]N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York. 1976. pp. 494.
[46]L. Ye, J. Liu, P. Sheng, J. S. Huang, and D. A. Weitz, “Sound propagation in colloidal systems,” J. Physique IV, 3 (Cl), 1993, pp. 183-196.
[47]林詩傑,改良式真空潛弧製程製備奈米二氧化鈦懸浮液之性質,碩士論文,國立台北科技大學冷凍空調工程研究所,台北,2006。
[48]http://www.trekintal.com.tw/
[49]P. Mulvaney, Zeta Potential and Colloid Reaction Kinetics, Weinheim: WILEY-VCH, 1998.
[50]鄧敦平,Research of Thermal Properties and Enhanced Heat Exchange Performance for Nanofluids,博士論文,國立台北科技大學機電科技研究所,台北,2007。
[51]W. A. Wakeham, A. Nagashime, and J. V. Sengers, Measurement of the Transport Properties of Fluids, Blackwell, Oxford, 1991.
[52]S. M. S. Murshed, K. C. Leong , C. Yang, “Enhanced thermal conductivity of TiO2-water based nanofluids, ” International Journal of Thermal Sciences, vol. 44, no. 4, 2005, pp. 367-373.
[53]J. C. Maxwell, A Treatise on Electricity and Magnetism, second ed., Clarendon Press, Oxford, UK, 1881.
[54]B. X. Wang, L. P. Zhou, and X. F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” Int. J. Heat and Mass Transfer, 46(14), 2003, pp. 2665-2672.
[55]L. P. Zhou and B. X. Wang, “Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady state method,” in: Ann. Proc. Chinese Eng. Thermophys. , Shanghai, 2002, pp. 889-892 (in Chinese).
[56]W. Yu and S. U. S Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,” Journal of Nanoparticle Research, 5, 2003, pp. 167-171.
[57]S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Applied Physics Letters, 84, 2004, pp. 4316-4318.
[58]Y. Ren, H. Xie, and A. Cai, “Effective thermal conductivity of nanofluids containing spherical nanoparticle,” J. Phys. D: Appl. Phys., 38, 2005, pp. 3958-3961.
[59]C. S. Jwo, T. P Teng, H. Chang, “A simple model to estimate thermal conductivity of fluid with acicular nanoparticles,” Journal of alloys and Compounds, vol. 434-435, 2007, pp. 569-571.
[60]Y. Xuan, Q. Li, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids,” Journal of Heat Transfer, vol.125, no. 1, 2003 ,pp. 151-155.
[61]B. C. Pak and Y. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, 11(2), 1998, pp. 151-170.
[62]S. Q. Zhou and R. Ni, “Measurement of the Specific Heat Capacity of Water-based Al2O3 Nanofluid,” Applied physics letters, 92(093123), 2008.
[63]A. Akbarinia, “Impacts of nanofluid flow on skin friction factor and Nusselt number in curved tubes with constant mass flow,” Heat and fluid flow, 29, 2008, pp. 229-241.
[64]M. Akbari, A. Behzadmehr, F. Shahraki, “Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid,” Heat and fluid flow, 29, 2008, pp. 545-556.
[65]J. Buongiorno, “Convective Transport in Nanofluids,” Transactions of the ASME, vol.128, 2006, pp. 240-250.
[66]徐堂瑞、陳鴻輝、徐貴新、劉張源,流體力學,高立出版社,1996。
[67]黃文雄,熱傳學,中央圖書出版社,1985。
[68]Yunus A. Cengel, heat transfer a practical approach, McGraw-Hill, 1998.
[69]Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park, and J. K. Lee, “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” Current Appl. Phys. 6(6) ,2006, pp. 1068-1071.
[70]郭育廷,三氧化二鋁奈米流體熱性質分析與實驗研究,碩士論文,國立台北科技大學冷凍空調工程研究所,台北,2006。
[71]C. H. Li and G. P. Peterson, “The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids,” Journal of Applied Physics, 101, 2007, 044312.
[72]S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” International Journal of Heat and Mass Transfer, 46 (5), 2003, pp.851-862.
[73]Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” International Journal of Heat and Mass Transfer, 49 (1–2), 2005, pp.240-250.
[74]P. K. Namburu, D. P. Kulkarni, D. Misra, D. K. Das, “Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture,” Experimental Thermal and Fluid Science, 32, 2007, pp. 397-402.
[75]D. Faulkner, M. Khotan, and R. Shekarriz, “Practical design of a 1000 W/cm2 cooling system,” Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Institute of Electrical and Electronics Engineers Inc., San Jose, CA, United States, 2003, pp.223-230.
[76]N. Putra, W. Roetzel, and S. K. Das, “Natural convection of nano-fluids, Heat and Mass Transfer,” 39(8-9), 2003, pp.775-784.
[77]D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, 47(24), 2004, pp. 5181.
[78]C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, and P. H. Chen, “Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance,” Material Letters, 58, 2004, pp.1461-1465.
[79]H. B. Ma, C.Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S. Choi, and M. Tirumala, “Effect of nanofluid on the heat transport capability in an oscillating heat pipe,” Applied Physics Letters, 88(14), 2006, 143116.
[80]R. Y. Chein and J. Chuang, “Experimental microchannel heat sink performance studies using nanofluids,” Int. J. of Thermal Sciences, 46, 2007, pp.57-66.
[81]Michael P. Beck, Tongfan Sun, Amyn S. Teja, “The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol,” Fluid Phase Equilibria, 260, 2007, 275-278.
[82]Haisheng Chen , Yulong Ding , Yurong He , Chunqing Tan, “Rheological behaviour of ethylene glycol based titania nanofluids,” Chemical Physics Letters, 444 ,2007, 333-337.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top