跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱迪
研究生(外文):Kai-Di Chang
論文名稱:含磷酸或醇基之環氧樹脂修飾金奈米的粒子研究
論文名稱(外文):Epoxy Resin Containing Phosphoric or Hydroxyl Group Functionalized Gold Nano-Particles
指導教授:王文竹
指導教授(外文):Wen-Jwu Wang
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:金奈米粒子偵測環氧樹脂
外文關鍵詞:gold nanopatriclesensorepoxy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:643
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
檸檬酸為三質子酸,檸檬酸還原的金奈米粒子表面帶負電,利用單質子酸( Hexanoic acid )修飾金奈米粒子表面來觀察水溶液中奈米粒子的行為。接著用雙質子酸( Adipic acid ) 修飾金奈米粒子表面,來做鹼金族和鹼土族金屬陽離子的偵測,發現以鹼土族有較好的偵測效果。
利用2-aminoethanethiol硫醇分子來修飾金奈米子表面,由於短碳鏈分子的影響,使穩定水相的金奈米粒子( AuNPs-citrate )從球狀變成桿狀穩定水相或有機相的金奈米粒子( AT-AuNPs )。
研究Epoxy環氧樹酯依不同官能基修飾金奈米表面,其修飾金奈米粒子表面也是帶負電,藉由不同官能基修飾來探討奈米粒子的形狀及大小是否會有聚集的情況,根據這些參數,來確定製備E-AuNPs最佳條件,進而發展為後續薄膜的偵測。並用TEM,AFM顯微鏡觀察。
有機/無機奈米複合材料是目前熱門研究的主題,主要是利用有機高分子以及無機物質兩者之特性相乘而形成奈米複合材料(nanocomposites)。
Gold nanopatricles were prepared by citric acid reduction of HAuCl4 according to published procedures. Functionalized gold nanopatricle were prepared by capping hexanoic acid ( HA ) in observation water solution. The pareicle size of AuNPs was confirmed by scanning electron microscope, scanning probe microscope and transmissiom electron microscopy. Functionalized gold nanopatricle were prepared by capping adipic acid ( AA ) on to the surface of AuNPs. Sensing (IA) and (IIA) metal ion,(IIA) metal ion have better sensing the effect. Functionalized gold nanopatricle were prepared by capping 2-aminoethanethiol ( AT ) on to the surface of AuNPs, the nanopatricle shape from spherically turns rod-shaped. Functionalized gold nanopatricle were prepared by capping Epoxy ( E ) on to the surface of AuNPs, preparing the best optimum condition, Application in thin film detecting.
目 錄
第一章 緒論..................................................................................................................1

第二章 實驗................................................................................................................11
2-1 試劑.......................................................................................................................11
2-2 物理鑑定儀器.......................................................................................................11
2-3 合成步驟...............................................................................................................12
2-4 奈米金粒子的製備及計算...................................................................................13
2-5 epoxy平均分子量及n值的計算.........................................................................15
2-6 epoxy修飾金奈米粒子的製備.............................................................................19
2-7 2-aminoethanethiol修飾金奈米粒子的製備........................................................20

第三章 結果與討論
3-1 金奈米粒子之合成與鑑定...................................................................................21
3-2 己酸( HA) 修飾金奈米粒子 ( HA-AuNPs )......................................................23
3-3 己二酸( AA )修飾金奈米粒子及對鹼金族陽離子的感測( AA-AuNPs )…......24
3-4 己二酸( AA )修飾金奈米粒子及對鹼土族陽離子的感測( AA-AuNPs )..........31
3-5 硫醇分子修飾金奈米粒子表面....... ...................................................................45
3-5.1 2-aminoethanethiol(水相)修飾的金奈米粒子( AT-AuNPs ) ....................49
3-5.2 2-aminoethanethiol(有機相)修飾的金奈米粒子( AT-AuNPs ).................51
3-6磷酸或醇基環氧樹脂修飾金奈米粒子表面........................................................53
3-6.1 E128-AuNPs之最佳製備.............................................................................57
3-6.2 MAA128-AuNPs之最佳製備..................................................................... 64
3-6.3 MAA128-P-AuNPs之最佳製備...................................................................68
3-6.4 製備AIBN-E128-AuNPs膠體溶液............................................................76
3-6.5 製備AIBN-MAA128-AuNPs膠體溶液.....................................................78
3-6.6 MAA904-P修飾金奈米粒子( MAA904-P-AuNPs )的製備.........................82

第四章 結論................................................................................................................90

第五章 參考文獻........................................................................................................92

圖 目 錄
Figure 1-1. Synthetic method for preparing Au particles......................................................................1
Figure 1-2. Preparation procedure of anionic mercaptoligand-stabilized AuNPs in
water. ................................……………………………......................................................2
Figure 1-3. Formation of AuNPs coated with organic shells by reduction of AuIII compounds
in the presence of thiols. ...................................................................................................3
Figure 1-4. Absorption spectra of nanoparticle in different size and color shanges..............................4
Figure 1-5. TEM images of the gold nanopatricles………………………………...............................4
Figure 1-6. Absorption spectra of nanospheres( SP ) and nanorodes ( NR1) The corresponding
numerical fits to the data are indicated by the solid lines....................................................5
Figure 1-7. Surface functionalization of gold nanopatricles using (a) organic molecules or
polymers (b) quaternary ammonium salts, and (c) alkanethiols……..................................6
Figure 1-8. Structure of and performance relations the DGEBA…......................................................8
Figure 1-9. Schematic representation of the general synthetic method used for the preparation of
a macroporous polymer containing individual Au nanoparticles: (a) synthesis of
nanoparticles; (b) coating with thick silica shells; (c) opal formation through natural
sedimentation; (d) infiltration with epoxy resin and dissolution of silica shells..…….......9
Figure 1-10. E-AuNPs.........................................................................................................................10
Figure 3-1. Absorption spectra of 20 nm CA-AuNPs ........................................................................22
Figure 3-2. Tapping-mode AFM image of 20 nm CA-AuNPs ……...................................................22
Figure 3-3. Absorption spectra of 1.47 nM CA-AuNPs in H2O upon addition of Hexanoic acid
(0.1M, (water : methanol = 4 : 1, 10 mL))……...............................................…….....…23
Figure3-4. Absorption spectra of 0.14nM CA-AuNPs in H2O upon addition of Adipic acid
(0.1M, (water : methanol = 4 : 1, 10 mL))……..........................................…………......24
Figure 3-5. Absorption spectra of 0.12 nM AA-AuNPs in H2O …….....................….…………......25
Figure3-6. Absorption spectra of 0.12 nM AA-AuNPs in H2O upon addition of LiCl .....................26
Figure 3-7. Plot of Absorbance of AA-AuNPs as s function of the﹝Li+﹞(a) mole ratio
( AA-AuNPs : Li+ ) = 1 : 5 (b) mole ratio ( AA-AuNPs : Li+ ) = 1 : 500 .........................27
Figure 3-8. Plot of ΔΑ of AA-AuNPs as a function of the 〔Li+〕(a) mole ratio
( AA-AuNPs : Li+ ) = 1 : 5 (b) mole ratio ( AA-AuNPs : Li+ ) = 1 : 500..........................27
Figure 3-9. Linear regression plot of ΔA of AA-AuNPs as a function of the〔Li2+〕........................28
Figure 3-10. Absorption spectra of 0.12 nM CA-AuNPs in H2O upon addition of NaCl...................28
Figure 3-11. Plot of A650/520 of AA-AuNPs as s function of the﹝Na+﹞(a) mole ratio
( AA-AuNPs : Na+ ) = 1 : 0.2 (b) mole ratio ( AA-AuNPs : Na+ ) = 1 : 200 ..................29
Figure 3-12. Plot of ΔΑ of AA-AuNPs as a function of the 〔Na+〕(a) mole ratio
( AA-AuNPs : Na+ ) = 1 : 1 (b) mole ratio ( AA-AuNPs : Na+ ) =1 : 200 ......................30
Figure 3-13. Linear regression plot of ΔA of AA-AuNPs as a function of the〔Na+〕.......................30
Figure 3-14. Absorption spectra of 0.12 nM AuNPs-citrate in H2O upon addition of MgCl2 ...........31
Figure 3-15. Plot of A750/521 of AA-AuNPs as s function of the﹝Mg2+﹞(a) mole
ratio ( AA-AuNPs : Mg2+ ) = 1 : 300 (b) mole ratio ( AA-AuNPs : Mg2+ ) = 1 : 500.....32
Figure 3-16. Plot of ΔΑ of AA-AuNPs as a function of the 〔Mg2+〕(a) mole ratio
( AA-AuNPs : Mg2+ ) = 1 : 10 (b) mole ratio ( AA-AuNPs : Mg2+ ) = 1 : 500...............32
Figure 3-17. Plot of ΔA of AA-AuNPs as a function of the〔Mg-Mg2+〕( Mg = 9 x 10-4 M ).........33
Figure 3-18. Linear regression plot of ΔA of AA-AuNPs as a function of the〔Mg-Mg2+〕( Mg = 9
x 10-4 M ).................................................................................................................................33
Figure 3-19. Absorption spectra of 0.12 nM AA-AuNPs in H2O upon addition of Mg(NO3)2...........34
Figure 3-20. Plot of Absorbance of AA-AuNPs as s function of the﹝Mg2+﹞(a) equivalent ratio
( AA-AuNPs : Mg2+ ) = 1 : 400 (b) equivalent ratio( AA-AuNPs : Mg2+ ) = 1 : 200......35
Figure 3-21. Plot of ΔΑ of AA-AuNPs as a function of the 〔Mg2+〕(a) equivalent ratio
( AA-AuNPs : Mg2+ ) = 1 : 400 (b) equivalent ratio ( AA-AuNPs : Mg2+ ) = 1 : 200.....35
Figure 3-22. Linear regression plot of ΔA of AA-AuNPs as a function of the〔Mg2+〕.................36
Figure 3-23. Absorption spectra of 0.12 nM AA-AuNPs in H2O upon addition of CaCl2 ….........36
Figure 3-24. Absorption spectra of 0.12 nM AA-AuNPs in H2O upon addition of CaCl2
〔equivalent ratio ( AA-AuNPs : Ca2+ ) = 1 : 300〕........................................................37
Figure 3-25. Absorption spectra of 0.12 nM AA-AuNPs in H2O upon addition of CaCl2
〔equivalent ratio ( AA-AuNPs : Ca2+ ) = 400 : 1000〕...................................................37
Figure 3-26. Plot of Absorbance of AA-AuNPs as a function of the 〔Ca2+〕….………....................38
Figure 3-27. Plot of ΔΑ of AA-AuNPs as a function of the 〔Ca2+〕(a) equivalent ratio ( AA-AuNPs :
Ca2+ ) = 1 : 1000 (b) equivalent ratio ( AA-AuNPs : Ca2+ ) = 1 : 500...........................39
Figure 3-28. Linear regression plot of ΔA of AA-AuNPs as a function of the 〔Ca2+〕................39
Figure 3-29. Plot of ABS of AA-AuNPs as a function of the 〔Ca2+〕〔equivalent ratio ( AA-AuNPs :
Ca2+ ) = 1 : 300〕..............................................................................................................40
Figure 3-30. Plot of ΔΑ of AA-AuNPs as a function of the 〔Ca2+〕(a) equivalent ratio ( AA-AuNPs :
Ca2+ ) = 1 : 1 (b) equivalent ratio ( AA-AuNPs : Ca2+ ) = 1 : 300...................................40
Figure 3-31. Plot of ABS of AA-AuNPs as a function of the 〔Ca2+〕〔equivalent ratio ( AA-AuNPs :
Ca2+ ) = 400 : 1000〕........................................................................................................41
Figure 3-32. Plot of ΔΑ of AA-AuNPs as a function of the 〔Ca2+〕﹝equivalent ratio ( AA-AuNPs :
Ca2+ ) = 300 : 1000﹞......................................................................................................42
Figure 3-33. Absorption spectra of 0.12 nM AA-AuNPs in H2O upon addition of BaCl2 .................42
Figure 3-34. Plot of Absorbance of AA-AuNPs as s function of the﹝Ba2+﹞(a) equivalent ratio ( AA-AuNPs : Ba2+ ) = 1 : 1 (b) equivalent ratio ( AA-AuNPs : Ba2+ ) = 1 : 200.........43
Figure 3-35. Plot of ΔΑ of AA-AuNPs as a function of the 〔Ba2+〕(a) equivalent ratio ( AA-AuNPs :
Ba2+ ) = 1 : 2 (b) equivalent ratio ( AA-AuNPs : Ba2+ ) = 1 : 200...................................44
Figure 3-36. Linear regression plot of ΔA of AA-AuNPs as a function of the 〔Ba2+〕....................44
Figure 3-37. Plot of ΔA of AA-AuNPs as a function of the (a)〔Li+ 〕,〔Na+〕 (b)〔 Mg2+ 〕,
〔Ca2+ 〕, 〔 Ba2+ 〕......................................................................................................45
Figure 3-38. Absorption spectra of MUDA-AuNPs in H2O………………………............................46
Figure 3-39. Absorption spectra of MUDA-AuNPs in H2O upon in different pH..............................47
Figure 3-40. Absorption spectra of MUDA-AuNPs in H2O………………………............................48
Figure 3-41. Absorption spectra of AuNPs in different mole ratio (a) thiol ( 11-MUDA ) (b) thiol
( 1-Hexanethiol : 11-MUDA = 1: 1 ) (c) thiol ( 1-Hexanethiol : 11-MUDA = 3 : 1 )
(d) thiol ( 1- Hexanethiol : 11-MUDA = 9 : 1 ) in H2O...................................................49
Figure 3-42. Absorption spectra of 1.47nM AuNPs in H2O upon addition of 2-aminoethanethiol
( 4.68 ul/MeOH , 4.68 x 10-7 mol , 0.1M ) stir 32 hr , NaOH tunded pH = 12
Centrifuge : 5500 rpm , 10゚C , 12 min redissolved in MeOH 20 mL , NaOH
tunded pH 12……………...........................................................................................…50
Figure 3-43. AFM images of AT-AuNPs……………………………….………............................…51
Figure 3-44. Absorption spectra of 1.47nM AuNPs in H2O upon addition of 2-aminoethanethiol
( 4.68 ul/MeOH , 4.68 x 10-7 mol , 0.1M ) stir 32 hr , NaOH tunded pH = 12
Centrifuge : 5500 rpm , 4゚C , 10 min redissolved in MeOH 20 mL , NaOH tunded
pH 8.5...........................................................................................................................….52
Figure 3-45. AFM images of AT-AuNPs………………………………………….............................53
Figure 3-46. Absorption spectra of (a) HAuCl4 in Millipore-Q water (b) HAuCl4 in
mix solvent( ddw : Dioxane = 1 : 1 ) upon addition of E128 in mix solvent ( ddw :
Dioxane = 1 : 1 ) .............................................................................................................54
Figure 3-47. Absorption spectra of (a) 26.6 nM E128-AuNPs (b) 0.025 nM E128-AuNPs in mix
solvent .............................................................................................................................55
Figure 3-48. AFM images of (a) 26.6 nM E128-AuNPs (b) 5nm E128-AuNPs.....................................56
Figure 3-49. AFM images of (a) 0.025 nM E128-AuNPs (b) 50 nm E128-AuNPs................................56
Figure 3-50. AFM images of (a) E128-AuNPs (b) particle size of E128-AuNPs….............………......57
Figure 3-51. AFM images of (a) E128-AuNPs ( after one month ) ( b) E128-AuNPs…........................58
Figure 3-52. Absorption spectra of 26.6nM E128-AuNPs in mix solvent upon addition of NaOH.....58
Figure 3-53. AFM images of 26.6nM E128-AuNPs in mix solvent upon addition of NaOH (pH 9)...59
Figure 3-54. TEM images of 26.6 nM E128-AuNPs in mix solvent……...............…..........................60
Figure 3-55. EDS of 26.6nM E128-AuNPs in mix solvent ……………………..................................61
Figure 3-56. TEM images of 26.6 nM E128-AuNPs in mix solven......................................................62
Figure 3-57. Absorption spectra of (a) 20.9nM E128-AuNPs in mix solvent and (b) color of 20.9 nM
E128-AuNPs..................................................................………....……………....…..…..63
Figure 3-58. TEM images of 20.9 nM E128-AuNPs in mix solvent.......................……….….....……63
Figure 3-59. EDS of 20.9nM E128-AuNPs in mix solvent………...…………...................….............64
Figure 3-60. Absorption spectra of MAA128 -AuNPs in mix solvent (a) 200∼800 nm( b ) 200∼800
nm …..............................................…........…………………………………......……...64
Figure 3-61 (a)(b)(c)(d). AFM images of MAA128-AuNPs in mix solvent upon addition different
mole ratio(a) HAuCl4 : MAA128 = 1 : 1 (b) HAuCl4 : MAA128 = 1 : 5 (c) HAuCl4 :
MAA128 = 1 : 10 (d) HAuCl4 : MAA128 = 1 : 20….…….............................................…65
Figure 3-62. AFM images of MAA128 -AuNPs in mix solvent upon addition different mole ratio (a) HAuCl4 : MAA128 = 1 : 1 (b) HAuCl4 : MAA128 = 1 : 5(c) HAuCl4 : MAA128 = 1 : 10 (d) HAuCl4 : MAA128 = 1 : 20…..……..……………............…......................................…66
Figure 3-63. TEM images of 20.9 nM MAA128 -AuNPs in mix solvent………........................…….67
Figure 3-64. Absorption spectra of 26.6nM MAA128 -AuNPs in mix solvent………........................67
Figure 3-65. TEM images of MAA128 -P-AuNPs in mix solvent……………………........................68
Figure 3-66. EDS of 20.9 nM MAA128 -P-AuNPs in mix solvent…………………..........................69
Figure 3-67. Absorption spectra of 26.6 nM MAA128-P-AuNPs in mix solvent upon on in different pH……………………………………………....................................................………69
Figure 3-68. AFM images of (a) 26.6nM MAA128 -P-AuNPs in mix solvent (b) particle size of
MAA128 -P-AuNPs …............................................………………………….….......….70
Figure 3-69. TEM images of MAA128-P-AuNPs in mix solvent,pH 10.7 …..............................….71
Figure 3-70. AFM images of (a) 26.6 nM MAA128-P-AuNPs in mix solvent (b) particle size of
MAA128 -P-AuNPs upon addition of NaOH …...............................................................72
Figure 3-71. TEM images of MAA128 -P-AuNPs in mix solvent,pH 8.4 .........................……....….73
Figure 3-72. AFM images of (a) 26.6 nM MAA128-P-AuNPs in mix solvent (b) particle size of
MAA128 -P-AuNPs ( pH 3.6 )…………................................................………......……74
Figure 3-73. Absorption spectra of MAA128 -P-AuNPs in mix solvent upon in different
temperature ( a )200∼800 nm ( b ) 400∼800 nm………......................................…....75
Figure 3-74. AFM images of (a) MAA128 -P-AuNPs in mix solvent(b) particle size of
MAA128-P-AuNPs ( 50℃ )………………...................…………………………….......75
Figure 3-75. TEM images of MAA128 -P-AuNPs in mix solvent, 50℃ .............................................76
Figure 3-76. Absorption spectra of (a) E128-AuNPs (b) AIBN-E128-AuNPs in mix solvent...............77
Figure 3-77. AFM images of AIBN-E128-AuNPs in mix solvent........................................................77
Figure 3-78. TEM images of AIBN-E128-AuNPs in mix solvent........................................................78
Figure 3-79. Absorption spectra of (a) MMA128-AuNPs and (b) AIBN- MMA128-AuNPs in mix
solvent..............................................................................................................................79
Figure 3-80. AFM images of AIBN-MAA128-AuNPs in mix solvent ................................................80
Figure 3-81. TEM images of AIBN-MAA128-AuNPs in mix solvent.................................................81
Figure 3-82. Absorption spectra of 26.6 nM MAA904-P-AuNPs in THF............................................82
Figure 3-83. TEM images of MAA904-P AuNPs in THF.....................................................................83
Figure 3-84. Absorption spectra of MAA904-P -AuNPs(a) 200~1000 nm (b) 400~800 nm in THF...84
Figure 3-85. TEM images of MAA904-P -AuNPs in THF...................................................................85
Figure 3-86. Absorption spectra of AIBN- MAA128-P -AuNPs in THF..............................................86
Figure 3-87. TEM images of AIBN- MAA128-P -AuNPs in THF........................................................87
Figure 3-88. TEM images of AIBN- MAA128-P -AuNPs in THF........................................................88
Figure 3-89 Microscope images of AIBN- MAA128-P -AuNPs in THF..............................................89
參 考 文 獻
(1) 王崇人主編 神奇的奈米科學, 2002, 354, 48∼51.
(2) Fojtik, A.; Henglein, A. Ber. Bunsenges. Phys. Chem. 1993, 97, 257.
(3) Okada, R. Appl. Phys. Lett. 1991, 58, 1662.
(4) Lisiecji, I.; Pileni, M.P. J. Am. Chem. 1993, 115, 3887.
(5) Henglein, A. J. Am. Chem. 1993, 97, 5457.
(6) Manfred t., R,; Wolfgang, H. J. Am. Chem. Soc. 1994, 116, 7401.
(7) Turkevitch, J.; Stevenson, P.C.; Hillier. J. Disscuss. Fareday Soc. 1951, 11,
55-75.
(8) Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis,G. H. M.;
van der Velden, J. W. A. Chem. Ber. 1981, 114, 3634-3642.
(9) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.
(10) Yonezawa, T.; Kunitake, Colloids Surf. A: Physicochem. 1999,149, 193-199.
(11) Sun, L.; Crooks, R. M.; Chechik, V. Chem. Commun. 2001, 359-360.
(12) Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D.J.; Kiely, C. J. J. Chem. Soc., Chem. Commun. 1995, 1655-1656
(13) 張煥宗主編, 『科普化材料』-金奈米粒子生物感測器, 臺北, 2005.
(14) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, C.-W.; Wang, C. R. C. Langmuir 1999, 15, 701-709.
(15) Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073-3077.
(16) Chun-Wei C.; Takeshi S.; Mitsuru A. Chem. Mater. 2002, 14, 2232-2239.
(17) 賴耿陽 譯著 環氧樹脂應用實務
(18) 賴家聲 環氧樹脂與硬化劑(上), 2001
(19) 黃滄閔, 成大化工所碩士論文, 2001
(20) Saegusa, T., Pure and Appl. Chem. 1995, 67, 1965.
(21) 工業材料, 1997, 5, 125.
(22) 蔡宗燕, 化工資訊, 1998, 2.
(23) Ke, Z.; Lei, G.; Yongming, C. Macromolecules. 2008, 41, 1800-1807.
(24) Benito, R. Nano Letters. 2002, 5, 471-473.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top