|
[1] J. W. Grossman, P. D. F. Ion, “On a portion of the well-known collaboration graph,” Congressus Numerantium 108, pp. 129-131, 1995. [2] R. D. Castro, J. W. Grossman, “Famous trails to Paul Erdos,” Mathematical Intelligencer 21, pp. 51-63, 1999. [3] L. A. N. Amaral, A. Scala, M. Barthélémy, H. E. Stanley ,”Classes of small-world networks,” Proceedings of the National Academy of Sciences, 97(21), pp.11149-11152, 2000. [4] M. E. J. Newman, “Clustering and preferential attachment in growing networks,” Physical Review E 64, pp. 025102, 2001. [5] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, Y. Åberg, “The web of human sexual contacts,” Nature 411, pp. 907-908, 2001. [6] M. E. J. Newman, “The structure of scientific collaboration networks,” Proceedings of the National Academy of Sciences, 98(2), pp. 404-409, 2001. [7] D. J. Watts, S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature 393, pp. 440-442, 1998. [8] A.-L. Barabási, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek, “Evolution of the social network of scientific collaborations,” Physica A 311, pp. 590-614, 2002. [9] K. Klemm, V. M. Eguiluz, “Highly clustered scale-free networks,” Physical Review E 65, pp. 036123, 2002. [10] P. Holme, B. J. Kim, “Growing scale-free networks with tunable clustering,” Physical Review E 65, pp. 026107, 2002. [11] K. Klemm, V. M. Eguiluz, “Growing scale-free networks with small-world behavior,” Physical Review E 65, pp. 057102, 2002. [12] C. P. Warren, L. M. Sander, and I. M. Sokolov, “Geography in a scale-free network model,” Physical Review E 66, pp. 056105, 2002. [13] G. Csanyi, B. Szendrői, “Structure of a large social network,” Physical Review E 69, pp. 036131, 2004. [14] M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas, “Models of social networks based on social distance attachment,” Physical Review E 70, pp. 056122, 2004. [15] B. Wang, H. Tang, Z. Zhang, Z. Xiu, “Evolving scale-free network model with tunable clustering,” International Journal of Modern Physics B, 19(26), pp. 3951–3959, 2005. [16] L. H. Wong, P. Pattison, G. Robins, “A spatial model for social networks,” Physica A 360, pp. 99-120, 2006. [17] R. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, and K. Kaski, “A model for social networks,” Physica A 371, pp. 851–860, 2006. [18] Y. Tsai, C.-C. Lin, P.-N. Hsiao, “Modeling email communications,” IEICE Transactions on Information and Systems, Vol.E87-D No.6, pp. 1438-1445, 2004. [19] R. M. Anderson, C. Fraser, A. C. Ghani, C. A. Donnelly, S. Riley, N. M. Ferguson, G. M. Leung, T. H. Lam, A. J. Hedley, “Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic,” Philosophical Transactions: Biological Sciences 359, pp. 1091-1105, 2004. [20] L. A. Meyers, B. P. Pourbohloul, M. E. J. Newman, D. M. Skowronski, R. C. Brunham, “Network theory and SARS:predicting outbreak diversity,” Journal of Theoretical Biology 232, pp. 71-81, 2005. [21] Y. Moreno, M. Nekovee, A.F. Pacheco, “Dynamics of rumor spreading in complex networks,” Physical Review E 69, pp. 066130, 2004. [22] P. G. Lind, L. R. da Silva, J. S. Andrade and H. J. Herrmann, “The spread of gossip in American schools,” Europhysics Letters 78, pp. 68005, 2007. [23] K. Kacperski, J. A. Hoyst, “Phase transitions as a persistent feature of groups with leaders in models of opinion formation,” Physica A 287, pp. 631-643, 2000. [24] M. E. J. Newman, S. Forrest, J. Balthrop, “Email networks and the spread of computer viruses,” Physical Review E 66, pp. 035101, 2002. [25] M. E. Crovella, M. S. Taqqu, A. Bestavros, “Heavy-tailed probability distributions in the World Wide Web,” In A Practical Guide To Heavy Tails, Chap.1, pp. 3-25, 1998. [26] R. Albert, H. Jeong, A.-L. Barabási, “Internet: Diameter of the World-Wide Web,” Nature 401, pp. 130-131, 1999. [27] Y. Tsai, C.-C. Lin, P.-N. Hsiao, “Heavy tail distribution in email network,” Proceedings of the 2002 SoftCOM, pp. 167-170, 2002. [28] H. Ebel, L.-I. Mielsch, S. Bornholdt, “Scale-free topology of e-mail networks,” Physical Review E 66, pp. 035103, 2002. [29] R. Albert, A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, Vol.74, pp. 48-97, 2002. [30] R. Tanaka, T.-M. Yi, J. Doyle, “Some protein interaction data do not exhibit power law statistics,” FEBS Letters, Vol.579, pp.5140-5144, 2005. [31] L. Li, D. Alderson, J. C. Doyle, W. Willinger, “Towards a theory of scale-free graphs: definition, properties, and implications,” Internet Mathematics, 2(4), pp. 431-523, 2006. [32] A.-L. Barabási, R. Albert, “Emergence of scaling in random networks,” Science 286, pp. 509-512, 1999. [33] http://www.oac.idv.tw [34] http://www.mygrizzie.com [35] http://www.peoplefisher.com [36] H. Zhou, “Scaling exponents and clustering coefficients of a growing random network,” Physical Review E 66, pp. 016125, 2002. [37] D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, and C. L. Giles, “Winners don’t take all: Characterizing the competition for links on the web,” Proceedings of the National Academy of Sciences, 99(8), pp. 5207–5211, 2002. [38] M. Mitzenmacher, “A brief history of generative models for power law and lognormal distributions,” Internet Mathematics, 1(2), pp. 226-251, 2004. [39] M. Huysman, V. Wulf, “IT to support knowledge sharing in communities, towards a social capital analysis,” Journal of Information Technology, Vol. 21, pp. 40-51, 2006. [40] R. L. Cross, A. Parker, and S. P. Borgatti, “A bird’s-eye view: Using social network analysis to improve knowledge creation and sharing,” Knowledge Directions, 2(1), pp. 48-61, 2000. [41] A. Abbott, H. Pearson, “Fear of human pandemic grows as bird flu sweeps through Asia,” Nature 427, pp. 472-473, 2004.
|