跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱琬棋
研究生(外文):Wan Chi Chiu
論文名稱:咬肌及顳肌注射肉毒桿菌神經毒素之後對大屬顱顏生長發育之影響
論文名稱(外文):Evaluation of Craniofacial Growth and Development Following Injections of Botulinum Neurotoxin into Masseter and Temporalis Muscles of Rats
指導教授:蔡吉陽蔡吉陽引用關係
指導教授(外文):Chi Yang Tsai
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙醫學系碩博士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:77
中文關鍵詞:肉毒桿菌神經毒素顱顏生長發育
外文關鍵詞:boutulinum neurotoxincraniofacial growth and development
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是藉由將肉毒桿菌神經毒素A型 (Botox®, Allergan Pharmaceuticals, Irvine, CA, USA) 注入大鼠咬肌及顳肌,使咬肌和顳肌麻痺、萎縮,來探討咬肌和顳肌對顱顏生長發育之影響。研究方法是選取60隻28天大的Long-Evans雄性之大鼠,隨機分為四組,每組15隻,依部位將25U/mL的A型肉毒桿菌神經毒素(BoNT/A)注射於大鼠:Group I之雙側咬肌(雙側顳肌則施打等量之0.9%生理食鹽水);Group II之雙側顳肌(雙側咬肌則施打等量之0.9%生理食鹽水);Group III之雙側咬肌和顳肌;Group IV為對照組,雙側咬肌及顳肌只施打0.9%生理食鹽水。每星期一次,連續七週,測量老鼠之體重。而後將77天大的大鼠犧牲,取下咬肌和顳肌,測量其重量及量測乾燥頭顱骨大小(共40項測量項目)。
最後完成研究總計有53隻大鼠。結果發現四組的平均體重在七個星期中並無明顯之統計上的差異。顳肌平均重量Group I和Group IV(µ=0.64±0.03g和0.061±0.09g)較Group II及Group III(分別為µ=0.43±0.03g和0.33±0.02g)大;咬肌平均重量Group II和Group IV(分別為µ=1.41±0.07g和1.38±0.04g)較Group I及Group III(分別為µ=1.26±0.07g和1.04±0.04g)大。肌肉之平均重量具統計上的差異(p<0.001)。乾燥頭顱骨的40項測量中,16項具有統計意義(p<0.05),分別為:(1)頭顱向實驗組之maximum skull height及upper anterior facial height比對照組小、lower anterior facial height和total anterior facial height比對照組大。(2)上顎向之U8 bimolar distance在Group III是最大的,而對照組是最小的。(3)下顎向測量項目中之total mandibular length I~III及corpus length實驗組較對照組大,而Group III是最大的;在ramus height I~IV方面,實驗組較對照組大,而Group I是最大的;在 mandibular plane angle方面實驗組比對照組平坦,且Group III的角度是最小的;在 bicoronoidal width和 bigonial width中,實驗組左右寬度較對照組小,而Group III是最小的。
本研究結果顯示咀嚼肌痲痺、萎縮且功能降低後會造成生長發育偏向垂直方向生長形成長臉型之顏面外觀。上臉部顯得矮短而下臉部變長,下顎骨體長度及下顎枝後緣高度也比正常大,下顎冠狀突及下顎骨角左右之間的距離也呈現狹窄之現象。研究證實了咀嚼肌萎縮後確實會影響顱顏骨型態及生長發育。
This study seeks to evaluate the craniofacial growth and development of growing rats following injections of botulinum neurotoxin type A (Botox®, Allergan Pharmaceuticals, Irvine, CA, USA) into masseter and temporalis muscles of rats. It aims to achieve masseter and temporalis muscle paralysis, inducing a decreased masticatory function, and to investigate the influences of masticatory hypofunction on cranial, maxillary, and mandibular bone growth and development.
The study was comprised of 60 Long-Evans rats which were 28 days old and randomly divided into four groups. A 25U/mL of botulinum neurotoxin type A (BoNT/A) was injected according to the following groups: Group I injection of bilateral masseter muscles (bilateral temporalis muscles received equal amounts of 0.9% sterile, non-preserved saline); Group II injection of bilateral temporalis muscles (bilateral masseter muscles received equal amounts of 0.9% sterile, non-preserved saline); Group III injection of bilateral masseter and temporalis muscles; Group IV is the control, both bilateral masseter and temporalis muscles received 0.9% sterile, non-preserved saline. The animals were weighed every week for a period of 7 consecutive weeks. After 49 days, the mature rats were perfused and sacrificed. The masseter and temporalis muscles were carefully dissected and harvested and the mean muscle mass were recorded. With the preparation of the dried skulls, direct anthropometric cranial, maxillary, and mandibular measurements (a total of 40 parameters) were carried out on the dried skulls.
At the end of the experiment, 53 animals completed the study. The mean changes in animal weights over the 7 weeks did not show any statistical significance. Following injections of BoNT-A, the mean temporalis mass in Group I and Group IV(µ=0.64±0.03g and 0.61±0.09g respectively) were more than Group II and Group III(µ=0.43±0.03g and 0.33±0.02g respectively); the mean masseter muscle mass in Group II and Group IV(µ=1.41±0.07g and 1.38±0.04 g) were more than Group I and Group III(µ=1.26±0.22g and 1.04±0.04g respectively). The differences in mean muscle wet mass were statistically significant (p<0.001). Out of the 40 parameters measured, 16 direct anthropometric measurements were statistically significant(p<0.05) and were as follows: (1)The cranial measurements in the experimental groups were smaller in the maximum skull height and upper anterior facial height and longer in the lower anterior facial height and the total anterior facial height. (2)The maxillary measurements of U8 bimolar distance were the widest in Group III and the narrowest in the control. (3)The mandibular measurements of total mandibular length I~III and the corpus length were longer in the experimental groups with the longest in Group III; in ramus height I~IV, the experimental groups were shorter than the control and Group I had the longest ramus height of all; the mandibular plane angles were flatter in the experimental groups and Group III had the smallest angle of all; in the bicoronoidal width and the bigonial width, the narrowest was in Group III.
The results shown that, following paralysis and atrophy of the masticatory muscles, a short upper anterior facial height with a lengthy lower anterior facial height would be observed. The mandibular length and the ramus height would be longer than normal and the distance between the right and left coronoid processes and the gonial angles would be shorter in width. This is typical of a facial profile that favors a vertical growth rotation and a formulation of dolichofacial pattern. It is demonstrated that atrophy of masitcatory muscles would alter craniofacial growth and development.
Table of Contents
Table of Contents………………………………….………………………..…...….I
Table captions…………………………………...………..…………………….....IV
Figure captions……………….………………………………........................…....V
Chinese Abstract……………………………………………………………..…...VI
English Abstract…………………….…………………....…………………...…VIII
Chapter 1: Introduction……………………………….………………………........1
I. General background…………………………………………………...…....2
II. Research rationale………………….…...…………………………...……..3
III. Purpose of the research………………………………...………………….6
IV. Hypothesis of the research……………………………………………...…6
Chapter 2: Literature Review…………..………………………………………......7
I. Craniofacial growth and development.………………………………..…....8
I.1. Definition of functional matrix theory .…………………….…...….....8
I.2. Relationship of the functional components and skeletal
units…….………………………………….…………………….…...…....8
I.3. Growth of the mandible.………………………………………...…....10
I.4. Clinical applications of functional matrix theory……………….……10
II. Masticatory muscle function on craniofacial
growth………………………………………………………….…...….....11
II.1. Effects of masticatory force………………………………………..11
II.2 .Effects of cross-sectional areas …….…….…………...….…...…..12
II.3. Position, orientation, and mechanical advantage.……...……….....13
III. Interrelationship between masticatory muscle activity and craniofacial growth and development…………..………………………………….……14
III.1. Past animal studies…………………………….…………………...14
III.2. Clinical studies…………………………...………………..……….16
IV. Botulinum neurotoxin…………………………………………………....17
IV.1. Brief history……………………………………..……………..........17
IV.2. Mechanism of action………………………………..………………18
IV.3. Time of action……………………..…………...……………….…...20
IV.4.Influences on neurogenic inflammation and muscle tissues.……......21
IV.5 Potency………………………………………………………............22
IV.6 Medical applications…………………………………………….…..23
Chapter 3: Materials & Methods……...………………………………..….........24
I. Materials…………………………………………..…………….……........25
II. Methods………………………………………………...……….………...25
II.1. Experimental design…………………….………….…………….....25
II.2. Experimental procedures…………………………………....…...26
III. Statistical Analysis……………………………………………..…...……39
Chapter 4: Results……………………………………….……………...…......40
I. Mean changes in animal weights over time…………………..……..…....41
II. Mean changes in muscle mass………………………………………..…..42
III. Mean changes in anthropometric measurements………………….……...43
III.1. Cranial measurements………………………………….…….…43
III.2. Maxillary measurements………………………………….….....43
III.3. Mandibular measurements…………………………….….…….44
Chapter 5: Discussion………………………………………………….……....45
I. Animal weights……………………………………………….……….46
II. Muscle mass…………………………………………………..……….46
III. Anthropometric measurements………………………………………..47
IV. Future applications of BoNT/A in orthodontics……………………….49
V. Drawbacks of our research……………………………………………50
Chapter 6: Conclusion…………………………………………………………51
Reference………………………………………………………………………53


Table Captions
Table 4.1 Mean changes in weight over time……………………………..…….62
Table 4.2 Mean changes in muscle wet mass………………………………...…63
Table 4.3 Mean changes in cranial anthropometric measurements……………..64
Table 4.4 Mean changes in maxillary anthropometric measurements..………....65
Table 4.5 Mean changes in mandibular anthropometric measurements……...…66













Figure Captions
Figure 2.1 The functional matrix hypothesis………………….…………..…67
Figure 2.2 Current orthodontic application of the functional matrix…..…....68
Figure 2.3 The structure of botulinum neurotoxin………………….…….…69
Figure 2.4 Mechanism of action of botulinum neurotoxins………..…...…...69
Figure 3.1 Landmark of the injection sites of the temporalis muscles……...70
Figure 3.2 Landmark of the injection sites of the masseter muscles...….…..70
Figure 3.3 Dissected temporalis and masseter muscles………..…………....71
Figure 3.4 Cranial, maxillary, and mandibular anthropometric points.…......72
Figure 3.5 Cranial, maxillary, and mandibular anthropometric
measurements………………………………………………………………..73
Figure 4.1 Mean changes in weight over time………………………...…….74
Figure 4.2 Mean changes in muscle mass………………………………..….75
Figure 4.3 Morphological differences of lower incisors in groups III
and IV (control)….……………………………………………………….….76
Figure 4.4 Morphological differences of upper incisors in groups III
and IV (control).……………………………………………………………..77
Behrents RG, Johnston LE, Jr. (1984). The influence of the trigeminal nerve on facial growth and development. Am J Orthod 85(3):199-206.

Borodic, G. E., & Pearce, L. B. (1994). New concepts in botulinum toxin therapy. Drug Saf 11, 145-52.
Borodic, G. E., Ferrante, R., Pearce, L. B., & Smith, K. (1994). Histologic assessment of dose-related diffusion and muscle fiber response after therapeutic botulinum A toxin injections. Mov Disord 9, 31-9.
Borodic, G. E., Pearce, L. B., Smith, K. L., Phelan, M., & Ferrante, R. (1993). Botulinum B toxin as an alternative to botulinum A toxin: a histologic study. Ophthal Plast Reconstr Surg 9, 182-90.
Bouvier, M., & Hylander, W. L. (1984). In vivo bone strain on the dog tibia during locomotion. Acta Anat (Basel) 118, 187-92.
Burgen, A. S., Dickens, F., & Zatman, L. J. (1949). The action of botulinum toxin on the neuro-muscular junction. J Physiol 109, 10-24.
Carter, G. M., & Harkness, E. M. (1995). Alterations to mandibular form following motor denervation of the masseter muscle. An experimental study in the rat. J Anat 186 (Pt 3), 541-8.
Chen, C. M., Stott, N. S., & Smith, H. K. (2002). Effects of botulinum toxin A injection and exercise on the growth of juvenile rat gastrocnemius muscle. J Appl Physiol 93, 1437-47.
Coffield, J. A., Bakry, N. M., Maksymowych, A. B., & Simpson, L. L. (1999). Characterization of a vertebrate neuromuscular junction that demonstrates selective resistance to botulinum toxin. J Pharmacol Exp Ther 289, 1509-16.
Cohen, S. R., & Thompson, J. W. (1987). Use of botulinum toxin to lateralize true vocal cords: a biochemical method to relieve bilateral abductor vocal cord paralysis. Ann Otol Rhinol Laryngol 96, 534-41.
Corruccini, R. S. (1984). An epidemiologic transition in dental occlusion in world populations. Am J Orthod 86, 419-26.
Davletov, B., Bajohrs, M., & Binz, T. (2005). Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins. Trends Neurosci 28, 446-52.
Dressler, D., Saberi, F. A., & Barbosa, E. R. (2005). Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr 63, 180-5.
Evans, D. M., Williams, R. S., Shone, C. C., Hambleton, P., Melling, J., & Dolly, J. O. (1986). Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes. Eur J Biochem 154, 409-16.
Gardner, E. L., Zukin, R. S., & Makman, M. H. (1980). Modulation of opiate receptor binding in striatum and amygdala by selective mesencephalic lesions. Brain Res 194, 232-9.
Goodship, A. E., Lanyon, L. E., & McFie, H. (1979). Functional adaptation of bone to increased stress. An experimental study. J Bone Joint Surg Am 61, 539-46.
Goose, D. H. (1981). Changes in human face breadth since the Mediaeval period in Britain. Arch Oral Biol 26, 757-8.
Guelinckx, P., Dechow, P. C., Vanrusselt, R., & Carlson, D. S. (1986). Adaptations in the temporalis muscles of rabbits after masseter muscle removal. J Dent Res 65, 1294-9.
Guyuron, B., Tucker, T., & Kriegler, J. (2003). Botulinum toxin A and migraine surgery. Plast Reconstr Surg 112, 171S-173S; discussion 174S-176S.
Halpern, M. E., Thisse, C., Ho, R. K., Thisse, B., Riggleman, B., Trevarrow, B., Weinberg, E. S., Postlethwait, J. H., & Kimmel, C. B. (1995). Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants. Development 121, 4257-64.
Haskell, B., Day, M., & Tetz, J. (1986). Computer-aided modeling in the assessment of the biomechanical determinants of diverse skeletal patterns. Am J Orthod 89, 363-82.
Hatheway, C. L. (1995). Botulism: the present status of the disease. Curr Top Microbiol Immunol 195, 55-75.
Hay, J. C. (2001). SNARE complex structure and function. Exp Cell Res 271, 10-21.
Heckmann, M., Ceballos-Baumann, A. O., & Plewig, G. (2001). Botulinum toxin A for axillary hyperhidrosis (excessive sweating). N Engl J Med 344, 488-93.
Ingervall, B., & Bitsanis, E. (1987). A pilot study of the effect of masticatory muscle training on facial growth in long-face children. Eur J Orthod 9, 15-23.
Ingervall, B., & Helkimo, E. (1978). Masticatory muscle force and facial morphology in man. Arch Oral Biol 23, 203-6.
Ingervall, B., & Thilander, B. (1974). Relation between facial morphology and activity of the masticatory muscles. J Oral Rehabil 1, 131-47.
Jee, W. S., Li, X. J., & Schaffler, M. B. (1991). Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat: a histomorphometrical and biomechanical study. Anat Rec 230, 332-8.
Jurasinski, C. V., Lieth, E., Dang Do, A. N., & Schengrund, C. L. (2001). Correlation of cleavage of SNAP-25 with muscle function in a rat model of Botulinum neurotoxin type A induced paralysis. Toxicon 39, 1309-15.
Kiliaridis, S. (1989). Muscle function as a determinant of mandibular growth in normal and hypocalcaemic rat. Eur J Orthod 11, 298-308.
Kiliaridis, S. (1995). Masticatory muscle influence on craniofacial growth. Acta Odontol Scand 53, 196-202.
Kiliaridis, S., Engstrom, C., & Chavez, L. M. (1992). Influence of masticatory muscle function on craniofacial growth in hypocalcemic rats. Scand J Dent Res 100, 330-6.
Kiliaridis, S., Engstrom, C., & Thilander, B. (1985). The relationship between masticatory function and craniofacial morphology. I. A cephalometric longitudinal analysis in the growing rat fed a soft diet. Eur J Orthod 7, 273-83.
Kiliaridis, S., Engstrom, C., & Thilander, B. (1988). Histochemical analysis of masticatory muscle in the growing rat after prolonged alteration in the consistency of the diet. Arch Oral Biol 33, 187-93.
Kiliaridis, S., Engvall, M., & Tzakis, M. G. (1995). Ultrasound imaging of the masseter muscle in myotonic dystrophy patients. J Oral Rehabil 22, 619-25.
Kiliaridis, S., Johansson, A., Haraldson, T., Omar, R., & Carlsson, G. E. (1995). Craniofacial morphology, occlusal traits, and bite force in persons with advanced occlusal tooth wear. Am J Orthod Dentofacial Orthop 107, 286-92.
Kiliaridis, S., Mejersjo, C., & Thilander, B. (1989). Muscle function and craniofacial morphology: a clinical study in patients with myotonic dystrophy. Eur J Orthod 11, 131-8.
Langer, J. C., Birnbaum, E. E., & Schmidt, R. E. (1997). Histology and function of the internal anal sphincter after injection of botulinum toxin. J Surg Res 73, 113-6.
Masoud, S. A., L. B. Johnson, et al. (1993). "Expression of a cysteine proteinase inhibitor (oryzacystatin-I) in transgenic tobacco plants." Plant Mol Biol 21(4): 655-63.

Matic, D. B., Yazdani, A., Wells, R. G., Lee, T. Y., & Gan, B. S. (2007). The effects of masseter muscle paralysis on facial bone growth. J Surg Res 139, 243-52.
Maxwell, L. C., Carlson, D. S., McNamara, J. A., Jr., & Faulkner, J. A. (1981). Adaptation of the masseter and temporalis muscles following alteration in length, with or without surgical detachment. Anat Rec 200, 127-37.
Meade, J. B., Cowin, S. C., Klawitter, J. J., Van Buskirk, W. C., & Skinner, H. B. (1984). Bone remodeling due to continuously applied loads. Calcif Tissue Int 36 Suppl 1, S25-30.
Meunier, F. A., Schiavo, G., & Molgo, J. (2002). Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris 96, 105-13.
Moore, A. P., & Wood, G. D. (1994). The medical management of masseteric hypertrophy with botulinum toxin type A. Br J Oral Maxillofac Surg 32, 26-8.
Moss ML (1972). Twenty years of functional cranial analysis. Am J Orthod 61(5):479-85.

Moss ML, Vilmann H (1978). Studies on orthocephalization of the rat head. I. A model system for the study of adjustive cranical growth processes. Gegenbaurs Morphol Jahrb 124(4):559-79.

Moss, M. L. (1997a). The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J Orthod Dentofacial Orthop 112, 8-11.
Moss, M. L. (1997b). The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. Am J Orthod Dentofacial Orthop 112, 221-6.
Moss, M. L. (1997c). The functional matrix hypothesis revisited. 3. The genomic thesis. Am J Orthod Dentofacial Orthop 112, 338-42.
Moss, M. L. (1997d). The functional matrix hypothesis revisited. 4. The epigenetic antithesis and the resolving synthesis. Am J Orthod Dentofacial Orthop 112, 410-7.
Moss, M. L., & Rankow, R. M. (1968). The role of the functional matrix in mandibular growth. Angle Orthod 38, 95-103.
Moss-Salentijn, L. (1997). Melvin L. Moss and the functional matrix. J Dent Res 76, 1814-7.
Munchau, A., & Bhatia, K. P. (2000). Uses of botulinum toxin injection in medicine today. Bmj 320, 161-5.
Navarro, M., Delgado, E., & Monje, F. (1995). Changes in mandibular rotation after muscular resection. Experimental study in rats. Am J Orthod Dentofacial Orthop 108, 367-79.
Newton, J. P., Abel, E. W., Robertson, E. M., & Yemm, R. (1987). Changes in human masseter and medial pterygoid muscles with age: a study by computed tomography. Gerodontics 3, 151-4.
Patarnello, T., Bargelloni, L., Rossetto, O., Schiavo, G., & Montecucco, C. (1993). Neurotransmission and secretion. Nature 364, 581-2.
Pepicelli, A., Woods, M., & Briggs, C. (2005). The mandibular muscles and their importance in orthodontics: a contemporary review. Am J Orthod Dentofacial Orthop 128, 774-80.
Phillips, C., Shapiro, P. A., & Luschei, E. S. (1982). Morphologic alterations in Macaca mulatta following destruction of the motor nucleus of the trigeminal nerve. Am J Orthod 81, 292-8.
Porter, J. D., Strebeck, S., & Capra, N. F. (1991). Botulinum-induced changes in monkey eyelid muscle. Comparison with changes seen in extraocular muscle. Arch Ophthalmol 109, 396-404.
Proffit WR, Fogle JL, Heitlinger LW, Christiansen RL, McGlone RE (1966). Dynamic calibration of lingual pressure transducers. J Appl Physiol 21(4):1417-20.

Proffit, W. R., & Fields, H. W. (1983). Occlusal forces in normal- and long-face children. J Dent Res 62, 571-4.
Proffit, W. R., Fields, H. W., & Nixon, W. L. (1983). Occlusal forces in normal- and long-face adults. J Dent Res 62, 566-70.
Ranly, Don M. (1988). A synopsis of craniofacial growth. 2nd rev. ed. London: Norwalk, Ct: Appleton and Lange.
Rossetto, O., Seveso, M., Caccin, P., Schiavo, G., & Montecucco, C. (2001b). Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 39, 27-41.
Rubin CT, Lanyon LE (1985). Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37(4):411-7.
Sakaguchi, M., Ohhashi, T., & Azuma, T. (1983). [Designing and application of an image-display type vascular diameter gauge]. Kokyu To Junkan 31, 751-4.
Sassouni, V. (1969). A classification of skeletal facial types. Am J Orthod 55, 109-23.
Setler, P. E. (2002). Therapeutic use of botulinum toxins: background and history. Clin J Pain 18, S119-24.
Sheean GL, Lees AJ (1995). Botulinum toxin F in the treatment of torticollis clinically resistant to botulinum toxin A. J Neurol Neurosurg Psychiatry 59(6):601-7.

Silberstein, S., Mathew, N., Saper, J., & Jenkins, S. (2000). Botulinum toxin type A as a migraine preventive treatment. For the BOTOX Migraine Clinical Research Group. Headache 40, 445-50.
Simpson, L. L. (1980). Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212, 16-21.
Simpson, L. L. (2000). Identification of the characteristics that underlie botulinum toxin potency: implications for designing novel drugs. Biochimie 82, 943-53.
Simpson, L. L., Coffield, J. A., & Bakry, N. (1994). Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 269, 256-62.
Smyth, A. G. (1994). Botulinum toxin treatment of bilateral masseteric hypertrophy. Br J Oral Maxillofac Surg 32, 29-33.
Soha, J. M., Callaway, E. M., & Van Essen, D. C. (1989). Lack of fiber type selectivity during reinnervation of neonatal rabbit soleus muscle. Dev Biol 131, 401-14.
Soni, N. N., & Malloy, R. B. (1974). Effect of removal of the temporal muscle on the coronoid process in guinea pigs: quantitative triple fluorochrome study. J Dent Res 53, 474-80.
Spencer, R. F., & McNeer, K. W. (1987). Botulinum toxin paralysis of adult monkey extraocular muscle. Structural alterations in orbital, singly innervated muscle fibers. Arch Ophthalmol 105, 1703-11.
Takada, K., Lowe, A. A., & Freund, V. K. (1984). Canonical correlations between masticatory muscle orientation and dentoskeletal morphology in children. Am J Orthod 86, 331-41.
Throckmorton, G. S. (1980). The chewing cycle in the herbivorous lizard Uromastix aegyptius (Agamidae). Arch Oral Biol 25, 225-33.
To, E. W., Ahuja, A. T., Ho, W. S., King, W. W., Wong, W. K., Pang, P. C., & Hui, A. C. (2001). A prospective study of the effect of botulinum toxin A on masseteric muscle hypertrophy with ultrasonographic and electromyographic measurement. Br J Plast Surg 54, 197-200.
To, E. W., Ahuja, A. T., Ho, W. S., King, W. W., Wong, W. K., Pang, P. C., & Hui, A. C. (2001). A prospective study of the effect of botulinum toxin A on masseteric muscle hypertrophy with ultrasonographic and electromyographic measurement. Br J Plast Surg 54, 197-200.
Tsai, C.Y., & Liao, Y.H. (2005). Effects on the craniofacial growth and development by injection of botulinum neurotoxin into the masseter muscle of rat. Master piece.
Turton K, Chaddock JA, Acharya KR (2002). Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci 27(11):552-8.

Ulgen, M., Baran, S., Kaya, H., & Karadede, I. (1997). The influence of the masticatory hypofunction on the craniofacial growth and development in rats. Am J Orthod Dentofacial Orthop 111, 189-98.
van Ermengem, E. (1979). Classics in infectious diseases. A new anaerobic bacillus and its relation to botulism. E. van Ermengem. Originally published as "Ueber einen neuen anaeroben Bacillus und seine Beziehungen zum Botulismus" in Zeitschrift fur Hygiene und Infektionskrankheiten 26: 1-56, 1897. Rev Infect Dis 1, 701-19.
van Spronsen, P. H., Weijs, W. A., Valk, J., Prahl-Andersen, B., & van Ginkel, F. C. (1992). A comparison of jaw muscle cross-sections of long-face and normal adults. J Dent Res 71, 1279-85.
Vargervik K (1998). Mandibular malformations: growth characteristics and management in hemifacial microsomia and Nager syndrome. Acta Odontol Scand 56(6):331-8.

Varrela, J. (1990a). Effects of attritive diet on craniofacial morphology: a cephalometric analysis of a Finnish skull sample. Eur J Orthod 12, 219-23.
Varrela, J. (1990b). Occurrence of malocclusion in attritive environment: a study of a skull sample from southwest Finland. Scand J Dent Res 98, 242-7.
Waltimo, A., Nystrom, M., & Kononen, M. (1994). Bite force and dentofacial morphology in men with severe dental attrition. Scand J Dent Res 102, 92-6.
Weijs, W. A., & Hillen, B. (1984a). Relationship between the physiological cross-section of the human jaw muscles and their cross-sectional area in computer tomograms. Acta Anat (Basel) 118, 129-38.
Weijs, W. A., & Hillen, B. (1984b). Relationships between masticatory muscle cross-section and skull shape. J Dent Res 63, 1154-7.
Wood, T. (1971). Breakdown of adenosine triphosphate by muscle preparations in the presence of perchloric acid. Anal Biochem 43, 107-18.
Zucman, J. (1960). Studies on the vascular connexions between periosteum, bone, and muscle. Br J Surg 48, 324-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top