跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱俊諭
研究生(外文):Chun-Yu Ciou
論文名稱:利用共振頻率作為鎳鈦合金根管銼週期性疲勞非破壞性檢測方式
論文名稱(外文):Nondestructive Test of Endodontic NiTi Rotary Instruments Cyclic Fatigue with Resonance Frequency
指導教授:謝松志
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙醫學系碩博士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:78
中文關鍵詞:鎳鈦週期性疲勞自然頻率有限元素分析根管銼
外文關鍵詞:nickel titaniumcyclic fatigueresonance frequencyfinite element analysisfile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
鎳鈦合金根管銼由於本身極佳的金屬特性因此已經被廣泛的應用在製造根管治療器械上。但不幸的是,在臨床治療的過程當中,常常會有不可預期的器械斷裂發生。而就目前而言並沒有一個很適當的方式能夠在器械斷裂前偵測出,因此本實驗的目的是去找到一種可檢測器械疲勞狀態的方式。
自然頻率分析法是一種已經被廣泛使用的非破壞性檢測方式,它會受到物質本身的質量,彈性係數以及邊界條件所影響。當鎳鈦根管銼在旋轉疲勞斷裂產生時,在金屬上會有微裂痕的產生,此時金屬的彈性係數會有所降低,因此在本身質量以及周圍的邊界條件不變下,器械的自然頻率應該會隨著本身剛性係數的下降而有所改變。
在本試驗中,利用一市售的共振頻率分析儀(IMPLOMATES®)來測量Profile在接受動態模擬臨床週期性疲勞破壞後之不同時期之共振頻率。初步的結果發現,週期性疲勞破壞會造成鎳鈦合金根管銼在其達到使用壽命的77%~85%時發生自然頻率下降。而頻率的下降量約為400Hz到950Hz,平均為558+146Hz。此外,在臨床檢測上,也顯示出使用過三個月的鎳鈦合金根管銼之自然頻率之值約8800Hz至9300Hz(平均9271+220Hz),相較全新的鎳鈦合金根管銼自然頻率在10000Hz至11000Hz之間(平均10054+252Hz),具有顯著性的差異(p<0.05)。
此結果顯示利用自然頻率為參數,偵測鎳鈦合金根管銼在受週期性疲勞破壞後造成結構完整性改變的構想具有可行性與未來在臨床上的應用性。
Ni-Ti alloy instruments are extensively used in the endodontic treatment due to their outstanding mechanical property. Unfortunately, the nickel titanium rotary file separates unexpectedly during the treatment procedure. There is no proper method to detect the instrument fracture in advance so far. The purpose of this study is to develop a device for checking the fatigue status of the instrument.
Resonance frequency analysis is a method wildly applied in the nondestructive tests. It is affected by alerting mass, elastic modulus and boundary conditions of a structure.
When Ni-Ti alloy rotary instruments have crack, there will be some micro-crack over the metal. And the elastic modulus will decrease, so when the mass and the boundary condition is fixed, the resonance frequency will change with the decreased elastic modulus of the instruments.
In this investigation, modal testing was performed by a commoditized device, IMPLOMATES®, to monitor the frequency responses of the profiles used clinically. Our preliminary results demonstrated that the cyclic loading on the profile results in decreasing the natural frequency. The frequency significantly decreased with a value of about 400 Hz ~ 950 Hz (558+146 Hz)when the test profiles preceded 77 % to 85 % of total life spam. In addition, our in vivo experiments also revealed that the resonance frequencies of the three-month used nickel titanium rotary files (8800 Hz~ 9300 Hz, average= 9271+220 Hz) are significantly lower than the new files (10000 Hz ~11000 Hz, average= 10054+252 Hz, p < 0.05)
These results showed that resonance frequency can be treated as an effective parameter in the fracture status evaluation of nickel titanium rotary instruments subjected to a series of cyclic loadings.
中文摘要 ...................................... I
英文摘要........................................ III
目 錄..................................... V

第一章、 緒論 …………………………………… 1

第二章、 文獻回顧………………………………………… 3
2.1根管治療………………………………………. 3
2.2根管治療器械…………………………………. 4
2.3鎳鈦合金根管銼……………………………..... 5
2.4非破壞性檢測…………………………………. 7
2.5金屬破壞模式…………………………………. 8
2.6名詞解釋…………...................... 10
2.6.1自然頻率(Resonance frequency)………… 10
2.6.2 鎳鈦根管銼之週期性疲勞原理………… 10
2.6.3 Schneider 氏角度修正法………………… 11
第三章、 研究動機、假說與目的….………………… 12
3.1 研究動機…………………………………… 12
3.2 研究假說…………………………………… 13
3.3 研究目的…………………………………… 13
第四章、 研究材料與方法………………………………… 14
4.1 實驗材料……………………………………… 14
4.2 純週期性疲勞(pure cycling fatigue)操作法…. 15
4.3 疲勞破壞……………………………………… 16
4.4 斷面分析……………………………………… 16
4.5 臨床器械分析………………………………… 17
4.6 有限元素模型分析…………………………… 17
第五章、 實驗結果……………………….………………… 20
第六章、 實驗討論…………………………………………. 24
第七章、 結論與建議………………………………………. 31
第八章、 參考文獻………………………………………… 33
第九章、 圖表……………………………………………… 36
表一 : 實驗流程圖……………………………………… 36
表二 : 有限元素模擬之各材料性質…………………… 37
表三:楊氏系數(YM)與共振頻率關係表……………… 38
圖2-6-1 : Schneider’s angle修正法 …………………… 39
圖4-1-1:將彎手機固定於夾具以及萬能試驗機上 … 40
圖4-1-2:自然頻率分析儀……………………………… 41
圖4-6-1 : I-DEAS所建立出Profile模型之橫斷面 (I-DEAS Modal)42
圖4-6-2 : Solid Modal (圖a為俯視,圖b為模型螺紋部分放大)… 43
圖4-6-2 : Solid Modal (整體觀)………………………… 44
圖4-6-3 : Solid Modal (由尖端算起為區段一、二、三、四)... 45
圖4-6-4 : Ansys Modal……………………………………… 46
圖4-6-5 : Ansys Modal 不同網格大小 …………………… 47-53
圖4-6-6 : 振動模態(圖a為Mode I、圖b為Mode II) .. 54
圖4-6-6 : 振動模態(a圖為Mode III、圖b為Mode IV).. 55
圖4-6-6 : 振動模態(a Mode I Top view、b Mode III Top view)..… 56
圖4-6-6 : 振動模態(a Mode II Top view、b Mode IV Top view)… 57
圖5-1 : 固持力與自然頻率之相關圖……………………. 58
圖5-2 : 根管銼針從全新到斷裂之自然頻率變化圖 …… 59
圖5-3 : 15支器械之統計圖(使用壽命與頻率)………….. 60
圖5-4 : 15支器械之統計圖(使用壽命與K值) …………. 61
圖5-5 : 臨床取樣分析 ………………………………… 62
圖5-6 : 器械斷面的掃描式電子顯微鏡圖(100倍)……… 63
圖5-7 : 器械斷面的掃描式電子顯微鏡圖(2000倍)…….. 64
圖5-8 : 不同網格大小之模型在Mode 1所呈現的振動頻率. 65
圖5-9 : 不同網格大小之模型在Mode 2所呈現的振動頻率. 66
圖5-10 : 不同網格大小之模型在Mode 3所呈現的振動頻率. 67
圖5-11 : 不同網格大小之模型在Mode 4所呈現的振動頻率. 68
圖5-12 : 不同網格大小之模型在Mode5所呈現的振動頻率. 69
圖5-13 : 不同網格大小之模型在Mode 6所呈現的振動頻率. 70
圖5-14 : 不同網格數目其Mode 1至Mode 6之振動頻率… 71
圖5-15 : 模型在不同破壞程度下其Mode 1之振動頻率…… 72
圖5-15 : 模型在不同破壞程度下其Mode 2之振動頻率…… 73
圖5-16 : 模型在不同破壞程度下其Mode 3之振動頻率…… 74
圖5-17 : 模型在不同破壞程度下其Mode 4之振動頻率…… 75
圖5-18 : 模型在不同破壞程度下其Mode 5之振動頻率…… 76
圖5-19 : 模型在不同破壞程度下其Mode 6之振動頻率…… 77
圖6-1 : 振動頻率量測位置…………………………………… 78
1.Buehler WH, Gilfrich JV, Wiley RC. 1963. Effect of low temperature phase changes on the mechanical properties of alloy near composition Ni-Ti. J Appl Phys. 34:1475-1477.
2.Chang WJ, Lee SY, Wu CC, Lin CT, Abiko Y, Yamamichi N, Huang HM. 2007. A newly designed resonance frequency analysis device for dental implant stability detection. Dent Mater J. 26:665-671.
3.Civjan S, Huget EF, DesSimon LB. 1975. Potential application of certain nickel-titanium(nitinol) alloys. J Dent Res. 54:89-96.
4.Cohen S, Burns RC. 1998 . Pathway of the pulp. 255.
5.Dietz DB, Di Fiore PM, Bahcall JK, Lautenschlager EP. 2000. Effect of rotational speed on the breakage of nickel-titanium rotary files. J Endod. 26:68-71.
6.Esposito PT, Cunningham CJ. 1995. A comparison of canal preparation with nickel-titanium and stainless steel instruments. J Endod. 21:173-176.
7.Fuchs HO, Stephens RI. 1980. Metal fatigue in engineering, John Wiley, Inc. New York.
8.Glossen CR, Haller RH, Dove SB, del Rio CE. 1995. A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod. 21:146-151.
9.Huang HM, Lee SY, Yeh CY, Lin CT. 2002. Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clin Oral Implants Res. 13:65-74.
10.Huang HM, Lee SY, Yeh CY, Wang MS, Chang WJ, Lin CT. 2001. Natural frequency analysis of periodontal conditions in human anterior teeth. Ann Biomed Eng. 29:915-920.
11.Huang HM, Yeh CY, Lee SY, Wang MS, Pan LC, Chen CC. 2001. Factors influencing the dynamic behaviour of human teeth. Med Biol Eng Comput. 39:176-181.
12.Haïkel Y, Serfaty R, Bateman G, Senger B, Allemann C. 1999. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 25:434-440.
13.Http://www.tzuchi.com.tw/file/HealthInfo/dental/documnt/endo.htm
14.Http://health.healthonline.com.tw/article/p2.html
15.Iijima M, Ohno H, Kawashima I, Endo K, Brantley WA, Mizoguchi I. 2002. Micro X-ray diffraction study of superelastic nickel-titanium orthodontic wires at different temperatures and stresses. Biomaterials. 23:1769-1774.
16.Kakehashi S, Stanley HR, Fitzgerald RJ. 1965. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol. 20:340-349.
17.Lee SY, Huang HM, Lin CY, Shih YH. 2000. In vivo and in vitro natural frequency analysis of periodontal conditions: an innovative method. J Periodontol. 71:632-640.
18.Li UM, Lee BS, Shih CT, Lan WH, Lin CP. 2002. Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod. 28:448-451.
19.Li UM, Shin CS, Lan WH, Lin CP. 2006. Application of nondestructive testing in cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Dent Mater J. 25:247-252.
20.Lim KC, Webber J. 1985. The validity of simulated root canals for the investigation of the prepared root canal shape. Int Endod J. 18:240-246.
21.Lowet G, Van Audekercke R, Van der Perre G, Geusens P, Dequeker J, Lammens J. 1993. The relation between resonant frequencies and torsional stiffness of long bones in vitro. Validation of a simple beam model. J Biomech. 26:689-696.
22.Peters OA, Barbakow F. 2002. Dynamic torque and apical forces of ProFile.04 rotary instruments during preparation of curved canals. Int Endod J. 35:379-389.
23.Powell SE, Simon JHS, Maze B. 1986. A comparison of the effect of modified and non-modified instrument tips on apical canal configuration. J Endod. 12:293-300.
24.Schäfer E, Lohmann D. 2002. Efficiency of rotary nickel-titanium FlexMaster instruments compared with stainless steel hand K-Flexofile--Part 1. Shaping ability in simulated curved canals. Int Endod J. 35:505-513.
25.Schilder H. 1967. Filling root canals in three dimension. Dental Clinic North American. 11:723-744.
26.Schilder H. 1974. Cleaning and shaping the root canal. Dental Clinic North American. 18:269-296.
27.Serene TP, Adams JD, Saxena A. 1994. Nickel-titanium instruments: applications in endodontics. St. Louis: Ishiyaku EuroAmerica, Inc.
28.Stephen, Richard, Burns. 2002. Pathway of the pulp.
29.Stoeckel D, Yu W. 1991. Superelastic Ni-Ti wire. Wire J Int. 3:45-50.
30.Tepel J, Schäfer E, Hoppe W. 1997. Properties of endodontic hand instruments used in rotary motion. Part 3. Resistance to bending and fracture. J Endod. 23:141-145.
31.Thompson SA, Dummer PM. 1997. Shaping ability of ProFile.04 Taper Series 29 rotary nickel-titanium instruments in simulated root canals. Part 2. Int Endod J. 30:8-15.
32.Thompson SA. 2000. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 33:297-310.
33.Thomson WT. 1988. Euler equation for beams, In “Theory of vibration with applications”. 221-224.
34.Torrisi L. 1999. The NiTi superelastic alloy application to the dentistry field. Biomed Mater Eng. 9:39-47.
35.Turpin YL, Chagneau F, Vulcain JM. 2000. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod. 26:414-417.
36.Walia HM, Brantley WA, Gerstein H. 1988. An initial investigation of the bending and torsional properties of Nitinol root canal files.Walia HM, Brantley WA, Gerstein H. J Endod. 14:346-351.
37.Williams KR, Williams AD 1997. Impulse response of a dental implant in bone by numerical analysis. Biomaterials. 18:715-719.
38.Zmener O, Balbachan L. 1995. Effectiveness of nickel-titanium files for preparing curved root canals. Endod Dent Traumatol. 11:121-123.
39.蕭琮仁. 2004. 牙齒根管治療之鎳鈦旋轉器械完整性檢測與評估. 國立台灣大學機械工程學研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊