(35.175.212.130) 您好!臺灣時間:2021/05/17 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳家泓
研究生(外文):Chia-Hung Chen
論文名稱:牙齒復形後之阻尼性質對受力反應之影響-利用動態力分析黏彈性有限元素模型
論文名稱(外文):Effects of Damping Properties of Restored Teeth on Loading Response-Analysis of a Viscoelastic Finite Element Model under Dynamic Force
指導教授:林哲堂林哲堂引用關係
指導教授(外文):Che-Tong Lin
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙醫學系碩博士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:94
中文關鍵詞:阻尼性質牙齒復形動態力
外文關鍵詞:Damping PropertiesDental RestorationDynamic Force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
牙齒復形後之受力反應可表現在牙齒之抗斷裂性上,而牙齒抗斷裂性和復形材與牙齒間的鍵結強度,及剩餘牙齒結構多寡有關。然而,牙科復形材影響牙齒復形後受力反應的確切因素尚未被完整討論。物體阻尼性質與物體受到衝擊力時所造成的破壞程度有關。在本研究體外實驗中,進行測量並比較牙齒復形前後之阻尼比,在方法上選擇上顎小臼齒,依布雷克氏第一級(Black’s Class I)窩洞修形成長寬高各為4公釐之窩洞後,依次填入銀粉、光聚合玻璃離子樹脂及光聚合複合樹脂。填入後以模態測試(modal testing)測量牙齒復形前後之阻尼比,並據此量測復形材之阻尼性質,作為建立三維有限元素模型之輸入條件。接著以此有限元素模型分析牙齒受動態力作用後之應力大小及分布。結果發現牙齒復形前之阻尼比為0.120±0.020;以銀粉復形牙齒之阻尼比(0.081±0.022)較以玻璃離子樹脂(0.106±0.024)及複合樹脂(0.111±0.020)於統計上為低(p < 0.05)。在有限元素分析中,比較有無阻尼性質之最大應力變化率發現,牙齒修形前之最大應力變化率為0.11%,而以銀粉復形後有最高應力變化率(0.20%),以玻璃離子樹脂復形(0.12%)次之,以複合樹脂復形(0.10%)最低。比較牙齒復形前後於頰側咬頭內部接近遠心齒頸部處之最大等效應力值發現,牙齒未修形前為9.58 MPa;以銀粉復形後為8.15 MPa;以玻璃離子樹脂復形後為11.59 MPa;以複合樹脂復形後為9.77 MPa。結果顯示不同復形材因為有不同阻尼性質,的確會影響牙齒受動態力作用時之反應,因此在選擇牙科復形材時應考量其阻尼效應。
Loading response of restored teeth can be expressed by fracture resistance. Fracture resistance of restored teeth was found to correlate to bonding strength of restorative materials and the amount of remained tooth structure. However, the exact effect of the restorative materials on the loading response of restored teeth was still not discussed. Damping effect of a structure is associated with the degree of damage when the structure was sustained to a sudden impact. In our in vitro study, the damping ratios of teeth with and without restoration were detected and compared. Human maxillary premolars were chosen and prepared as Black’s Class I cavity (with geometry of 4x4x4 mm). The tested teeth were divided into three catalogues which restored with amalgam, glass ionomer, and composite resin, respectively. Modal testing was used to measure the damping ratios of the teeth before and after restorations. The mean damping ratio of the teeth before restorations is 0.120±0.020. The damping ratio of teeth restored with amalgam demonstrated a statistically lower value (0.081±0.022) than those of teeth restored with glass ionomer (0.106±0.024, p<0.05) and composite resin (0.111±0.020, p<0.05). These values were then input into a 3-D finite element model to calculate its viscoelastic response when subjected to a dynamic load. In the finite element analysis of this study, the change of maximum stress of models with and without damping properties was compared. The change ratio of the model with amalgam restoration (0.20%) was higher than those of teeth without restoration (0.11%), with glass ionomer restoration (0.12%) and with composite resin restoration (0.10%). The maximal equivalent stress of the point in buccal cusp near distal cervical area before and after restoration was compared. The values of teeth were 9.58 MPa (original), 8.15 MPa (amalgam restoration), 11.59 MPa (glass ionomer restoration), and 9.77 MPa (glass ionomer restoration). Our results demonstrated that different restorative materials have different damping properties. In addition, the damping properties really affect the loading response of the restored teeth. Accordingly, we suggest that the damping effects should be took into account when choosing restorative materials.
目 錄
頁 數
致 謝 ………………………………………………………… . Ⅰ
中文摘要 ………………………………………………………… . Ⅱ
英文摘要 ………………………………………………………… . Ⅳ
目 錄 ………………………………………………………… . Ⅵ

第一章 緒論
第一節 研究動機與重要性 ………………………………. 1
第二節 研究目的 …………………………………………. 3
第三節 研究假設 …………………………………………. 4
第四節 名詞界定 …………………………………………. 4

第二章 文獻查證
第一節 牙齒復形後之受力反應-牙齒抗斷裂性 ………. 7
第二節 阻尼效應 ……………………………………….… 8
第三節 有限元素分析 ……………………………………. 10

第三章 研究材料與方法
第一節 實驗設計 …………………………………………. 11
第二節 理論基礎 …………………………………………. 11
第三節 模態測試 …………………………………………. 13
第四節 有限元素分析 ……………………………………. 16
第五節 統計分析 …………………………………………. 22

第四章 結果
第一節 模態測試 …………………………………………. 23
第二節 有限元素分析 ……………………………………. 24

第五章 討論 ……………………………………………………. 26

第六章 結論與未來展望 ………………………….…………… 36

第七章 參考文獻 ………………………………………………. 37

附錄 ………………………………………………………………. 47
Anusavice KJ (2003). In: Phillip’s science of dental materials. 11th Ed. USA: Saunders Inc., pp.54, 451.

Ausiello P, Rengo S, Davidson CL, Watts DC (2004). Stress distribution in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Dent Mater 20:862-872.

Bakke JC (1985). Fracture strength of Class II preparations with a posterior composite. J Dent Res 64:350.

Brantley CF, Bader JD, Shugars DA, Nesbit SP (1995). Does the cycle of restoration lead to larger restorations? J Am Dent Assoc 126:1407-1413.

Camacho GB, Goncalves M, Nonaka T, Osório AB (2007). Fracture strength of restored premolars. Am J Dent 20:121-124.

Caron GA, Murchison DF, Cohen RB, Broome JC (1996). Resistance to fracture of teeth with various preparations for amalgam. J Dent 24:407-410.

Carranza FA, Newman MG (2002). In: Clinical periodontology. 9th Ed. USA: W.B. Saunders Co., pp.41, 48.

Cavel WT, Kelsey WP, Blankenau RJ (1985). An in vivo study of cuspal fracture. J Prosthet Dent 53:801-807.

Chu CS, Lin MS, Huang HM, Lee MC (1994). Finite element analysis of cerebral contusion. J Biomech 27:187-194.

Craig RG, Powers JM (1980). In: Restorative dental materials. USA: Mosby, Inc., pp.10-35.

Craig RG, Powers JM (2002). In: Restorative dental materials. 11th Ed. USA: Mosby, Inc., pp.68, 79.

de Vree JH, Spierings TA, Plasschaert AJ (1983). A simulation model for transient thermal analysis of restored teeth. J Dent Res 62:756-9.

Dimarogonas AD, Abbasi-Jahromi H, Avioli LV (1993). Material damping for monitoring of density and strength of bones. Calcif Tissue Int 52:224-247.

Dawson PE (2007). In: Functional occlusion from TMJ to smile design. USA: Mosby, Inc., pp.32.

Eakle WS, Staninec M, Lacy AM (1992). Effect of bonded amalgam on the fracture resistance of teeth. J Prosthet Dent 68:257-260.

Ehrnford LE, Fransson H (1994). Compressive fracture resistance of the marginal ridge in large Class II tunnels restored with cermet and composite resin. Swed Dent J 18:207-211.

El-Mowafy OM (1993). Fracture strength and fracture patterns of maxillary premolars with approximal slot cavities. Oper Dent 18:160-166.

Fabra-Campos H, Dalmases FJ, Buendia M Cibrian RM (1991). Dynamic resistance of teeth: technical considerations and applications of an experimental device. Endod Dent Traumatol 7:10-14.

Fissore B, Nicholls JI, Yuodelis RA (1991). Load fatigue of teeth restored by a dentine bonding agent and a posterior composite resin. J Prosthet Dent 65:80-85.

Gelb MN, Baroush E, Simonsen RJ (1986). Resistance of cusp fracture in class II prepared and restored premolars. J Prosthet Dent 55:184-185.

Gracis SE, Nicholls JI, Chalupnik JD, Yuodelis RA (1991). Shock-absorbing behavior of five restorative materials used on implants. Int J Prosthodont 4:282-291.

Hampson D (1995). Facial injury: A review of biomechanical studies and test procedures for facial injury assessment. J Biomech 28:1-7.

Hernandez R, Bader S, Boston D, Trope M (1994). Resistance to fracture of endodontically treated premolars restored with new generation dentine bonding systems. Int Endod J 27:281-284.

Holmes DC, Loftus JT (1997). Influence of bone quality on stress distribution for endosseous implants. J Oral Implantology 23:104-111.

Huang C, Kei LH, Wei SH, Cheung GS, Tay FR, Pashley DH (2002). The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction. J Adhes Dent 4:61-71.

Huang C, Tay FR, Cheung GS, Kei LH, Wei SH, Pashley DH (2002). Hygroscopic expansion of a compomer and a composite on artificial gap reduction. J Dent 30:11-19.

Huang HM, Lee SY, Yeh CY, Wang MS, Chang WJ, Lin CT (2001). Natural frequency analysis of periodontal conditions in human anterior teeth. Ann Biomed Eng 29:915-920.

Huang HM, Ou KL, Wang WN, Chiu WT, Lin CT, Lee SY (2005). Dynamic finite element analysis of the human maxillary incisor under impact loading in various directions. J Endod 31:723-727.

Huang HM, Tsai CY, Lee HF, Lin CT, Yao WC, Chiu WT, Lee SY (2006). Damping effects on the response of maxillary incisor subjected to a traumatic impact force: a nonlinear finite element nalysis. J Dent 34:261-268.

Huang HM, Yeh CY, Lee SY, Wang MS, Pan LC, Chen CC (2001). Factors influencing the dynamic behaviour of human teeth. Med Biol Eng Comput 39:176-181.

Ichim I, Schmidlin PR, Kieser JA, Swain MV (2007). Mechanical evaluation of cervical glass-ionomer restorations: 3D finite element study. J Dent 35:28-35.

Iida T, Mukohyama H, Inoue T, Oki M, Suzuki R, Ohyama T, Taniguchi H (2001). Modal analysis of the maxillary dentition in cleft lip and palate patients before and after bone grafting. J Med Dent Sci 48:87-94.

Jagadish S, Yogesh BG (1990). Fracture resistance of teeth with class 2 silver amalgam, posterior composite and glass cermet restoration. Oper Dent 15:42-47.

Kamposiora P, Papavasilious G, Bayne SC, Felton DA (1994). Finite element analysis estimates of cement microfracture under complete veneer crowns. J Prosthet Dent 71:435-441.

Khera SC, Goel VK, Chen RC, Gurusami SA (1988). A three-dimensional finite element model. Oper Dent 13:128-137.

Kim Y, Oh TJ, Misch CE, Wang HL (2005). Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res 16:26-35.

Lekholm U, Zarb GA (1985). Patient selection and preparation. In: Tissue integrated prostheses: osseointegration in clinical dentistry. Brånemark P-I, Zarb GA, Albrektsson T, editors. Chicago: Quintessence Publ Co., pp. 199-209.

Liberman R, Ben-Amar A, Hirsh A (1990). The effect of posterior composite restorations on the resistance of cavity walls to vertically applied occlusal loads. J Oral Rehabil 17:99-105.

Lin CL, Chang CH, Ko CC (2001). Multifactorial analysis of an MOD restored human premolar using auto-mesh finite element approach. J Oral Rehabil 28:576-585.

Lin CL, Chang YH, Liu PR (2008). Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: A finite element study. J Dent 36:194-203.

Lustig JP, Tamse A, Fuzz Z (2000). Pattern of bone resorption in vertically fractured, endodonticaly treated teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90:224-227.

Mackenzie DF (1986). The reinforcing effect of mesio-occluso-distal acid-etch composite restorations on weakened posterior teeth. Br Dent J 161:410-414.

McCullock AJ, Smith BG (1986). In vitro studies of cusp reinforcement with adhesive material. Br Dent J 161:450-452.

Marks LW, Gardner TN (1993). The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence. J Biomed Eng 15:474-476

Mensor MC, Ahlstrom RH, Scheerer EW (1998). Compliant keeper system replication of the periodontal ligament protective damping function for implants: Part I. J Prosthet Dent 80:565-569.

Mensor MC, Ahlstrom RH, Scheerer EW (1999). Compliant keeper system replication of the periodontal ligament protective damping function for implants: Part II. J Prosthet Dent 81:404-410.

Moaveni S (1999). Finite element analysis. Theory and application with ANSYS. Upper Saddle River, New Jersey. pp. 43-45.

Mondelli J, Steagall L, Ishikiama A, Navaro M, Soares F (1980). Fracture strength of human teeth with cavity preparations. J Prosthet Dent 43:419-422.

Morin D, DeLong R, Douglas WH (1984). Cusp reinforcement by the acid-etch technique. J Dent Res 63:1075-1078.

Moroi HH, Okimoto K, Moroi R, Terada Y (1993). Numeric approach to the biomechanical analysis of thermal effects in coated implants. Int J Prosthodont 6:564-572.

Mow VC, Hayes WC (1997). In: Basic orthopaedic biomechinics. Mow VC, Hayes WC, editors. New York: Lippincott-Raven, pp. 395-460.

Okazaki M, Fukumoto M, Takahashi J (1996). Damped oscillation analysis of natural and artificial periodontal membranes. Ann Biomed Eng 24:234-240.

Oliveira FC, Denehy GE, Boyer DB (1987). Fracture resistance of endodontically prepared teeth using various restorative materials. J Am Dent Assoc 115:57-60.

Petyt M (1990). Introduction to finite element vibration analysis. Cambridge University Press UK. pp. 387-389.

Rao SS (1990). Mechanical vibrations. 2nd Ed. New York: Addison-Wesley Inc., pp. 26-37.

Roberson TM (1947). Fundamentals in tooth preparation. In: Sturdevant’s art and science of operative dentistry. Roberson TM, Heymann HD, Swift EJ, Jr., editors. St. Louis: Mosby, Inc., pp. 282-285.

Romeed SA, Fok SL, Wilson HF (2006). A comparison of 2D and 3D finite element analysis of a restored tooth. J Oral Rehabil 33:209-215.

Salis SG, Hood JAA, Stokes ANS and Kirk EEJ (1987). Patterns of indirect fracture in intact and restored human premolar teeth. Endod Dent Traumatol 3:10-14.

Santos AC, Meiers JC (1994). Fracture resistance of premolars with MOD amalgam restorations lined with amalgambond. Oper Dent 19:2-6.

Schatz D, Alfter G, Göz G (2001). Fracture resistance of human incisors and premolars: morphological and patho-anatomical factors. Dent Traumatol 17:167-173.

Skalak R (1983). Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 49:843-848.

Standford JW, Weigel KV, Paffenbarger GC, and Sweeney WT (1960). Compressive properties of hard tooth tissue. J Am Dent Assoc 60:746-756.

Stampalia LL, Nicholls JI, Brudvik JS, Jones DW (1986). Fracture resistance of teeth with resin-bonded restorations. J Prothet Dent 55:694-698.

Sun Q, Gan RZ, Chang KH, Dormer KJ (2002). Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1:109-122.

Tamse A, Fuss Z, Lustig J, Kaplavi J (1999). An evaluation of endodontically treated vertically fractured teeth. J Endod 7:506-508.

Thomson WT (1988). Energy dissipated by damping. In: Theory of vibration with applications. Thomson WT, editor. New Jersey: Prentice-Hall Co., pp. 67-70.

Vale WA (1956). Cavity preparation. Irish Dent Rev 2:33-41.

Vale WA (1959). Cavity preparation and further thoughts on high speed. Br Dent J 107:333-346.

Watts DC, el-Mowafy OM, Grant AA (1987). Fracture resistance of lower molars with class I composite and amalgam restorations. Dent Mater 3:261-264.

Yamada Y, Tsubota Y, Fukushima S (2004). Effect of restoration method on fracture resistance of endodontically treated maxillary premolars. Int J Prosthodont 17:94-98.

Yap AU, Shah KC, Chew CL (2003). Margianl gap formation of composites in dentine: effect of water storage. J Oral Rehabil 30:236-242.

Zidan O, Abdel-Keriem U (2003). The effect of amalgam bonding on the stiffness of teeth weakened by cavity preparation. Dent Materials 19:680-685.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top