(3.238.173.209) 您好!臺灣時間:2021/05/16 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡樹榮
研究生(外文):Shu-Jung Tsai
論文名稱:吳茱萸鹼誘導人類食道癌細胞死亡之作用機轉
論文名稱(外文):The effect and mechanism of evodiamine on inducing celldeath of human esophageal cancer cells
指導教授:許準榕
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:食道癌吳茱萸鹼有絲分裂風暴中心體紡綞體檢查點
外文關鍵詞:Esophageal carcinomaEvodiamineMitotic catastropheCentrosomeSpindle checkpoint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據行政院衛生署民國九十五年公佈台灣地區主要癌症死亡原因,食道癌位居第九位,居男性癌症死因的第六位,五年的存活率低於10%。食道癌早期常無明顯症狀,因此大部分病患都無法於早期獲得診斷,大約只有30%之病患在診斷之時,有機會接受手術之治療。所以發展新一代藥劑單獨使用或併用他藥來治療食道癌,有即刻與強烈的需要。
吳茱萸中的成分吳茱萸鹼(evodiamine)是多功能物質,具有降血壓、抗心律不整、刺激內皮細胞和抑制巨噬細胞釋放一氧化氮之作用。抗腫瘤的作用包括誘導細胞凋亡、抑制血管生成的作用及抑制腫瘤細胞的侵入和轉移等等。
本實驗首次將吳茱萸鹼作用於人類食道癌細胞株CE 81T/VGH 和 TE2。研究結果顯示:隨著時間及劑量之增加,吳茱萸鹼對人類食道癌細胞株CE 81T/VGH和TE2的生長抑制亦隨之增加,在72小時可以高達80%。在加藥處理後皆可以見到CE81T/VGH及TE2細胞株具有有絲分裂風暴之形態學特徵,所以我們推測造成CE 81T/VGH和 TE2細胞株死亡的方式主要為有絲分裂風暴。在免疫螢光染色下,CE 81T/VGH及 TE2細胞株在藥物處理後24小時皆可以見到因中心體數目增加而形成的多端紡錘體細胞。造成CE 81T/VGH及TE2細胞株中心體異常增多的原因可能為Aurora A 的過度表現。與有絲分裂有關的調節蛋白如MAD1、Bub R1、Aurora B及Survivin亦隨著吳茱萸鹼作用時間的增長而有不同的表現,所以我們推測紡綞體檢查點蛋白的異常表現是吳茱萸鹼造成CE81T/VGH及TE2細胞株紡綞體檢查點缺失或異常的主要原因。以流式細胞儀分析發現CE 81T/VGH及 TE2細胞株在藥物處理後24小時細胞週期停滯在G2/M。以西方墨點法分析發現CE 81T/VGH和 TE2細胞株的細胞週期調節蛋白cyclin B1及cdk1在第一天皆有不正常的表現。
吳茱萸鹼在極低濃度下就有很高的細胞生長抑制的效果,所以具有對抗食道癌細胞之作用,因此有可能作為食道癌的化學治療藥劑。而且吳茱萸鹼可以讓食道癌細胞週期停滯在G2/M,具有輻射致敏劑的潛力。因此茱萸鹼有可能成為新一代治療食道癌的治療藥劑。但是吳茱萸鹼是否可以直接用於治療食道癌病患,則需進一步的研究發展。
Malignant tumor is one of the most common causes of death worldwide and cancer-related mortality is expected to increase considerably. Esophageal cancer, usually is unresectable while diagnosis, has dismal prognosis. Despite aggressive treatment, the overall 5-year survival rate is less than 10%. Clearly, development of new effective therapy in this malignancy remains the critically important issue in clinical practice.
Evodiamine is a naturally occurring bioactive ingredient of Evodia rutaecarpa (Juss.) Benth. Previous studies on evodiamine showed several biological functions including anti-hypertension, anti-arrhythmia, stimulation on endothelial cells and inhibition on nitric oxide release from macrophages. It has also been demonstrated possessing anti-tumor effects on inducing apoptosis as well as inhibiting tubulin polymerization, angiogenesis, tumor invasion, and metastasis.
This study is the first to examine the anti-tumor effect of evodiamine against human esophageal carcinoma cell lines CE 81T/VGH and TE2. The results show that evodiamine inhibited the growth of these two cell lines, up to 80% inhibition at 72 hours, in a dose- and time-dependent manner. Treatment with evodiamine arrested cell cycle at G2/M phase and induced morphological changes characteristic of mitotic catastrophe in both cell lines. By immunofluorescence staining, centrosome amplification and multipolar spindle were observed. To link these mitosis-related cellular events, the expression of proteins involving chk-cdk1-cyclin B mitotic pathway and spindle checkpoints was assessed simultaneously. Upon evodiamine treatment, cdk1 and cyclin B1 were up-regulated accompanied by a moderate increase in phosphorylation of histone 3, validating an arrest at G2/M. The molecules involving centrosome maturation and spindle checkpoint function, such as Aurora A, Mad1, BubR1, Aurora B and Survivin were up-regulated by evodiamine with a similar time to plateau over 4 – 24 hours followed by degradation.
In conclusion, evodiamine possesses growth inhibitory activity against human esophageal cancer cells. The major mode of cell death induced by evodiamine is mitotic catastrophe accompanied by G2/M arrest and centrosome amplification. The putative mechanisms of action might be those mediating centrosome maturation, amplification and spindle checkpoint function. It indicates that evodiamine might be a potent and novel therapeutic agent against esophageal cancer and may have a role in radiation sensitization. Further in vivo studies including anti-tumor effect and toxicity are warranted.
章節目錄..................................................Ⅲ
圖表目錄..................................................Ⅳ
中文摘要..................................................Ⅵ
英文摘要..................................................Ⅷ
緒論.......................................................1
研究方法與材料.............................................8
結果......................................................17
討論......................................................23
結論與展望................................................43
參考文獻..................................................44
圖表......................................................49
Alderton, G. K., Joenje, H., Varon, R., Borglum, A. D., Jeggo, P. A., & O''Driscoll, M. (2004). Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum Mol Genet, 13(24), 3127-3138.
Ayscough, K., Hayles, J., MacNeill, S. A., & Nurse, P. (1992). Cold-sensitive mutants of p34cdc2 that suppress a mitotic catastrophe phenotype in fission yeast. Mol Gen Genet, 232(3), 344-350.
Baruah, B., Dasu, K., Vaitilingam, B., Mamnoor, P., Venkata, P. P., Rajagopal, S., et al. (2004). Synthesis and cytotoxic activity of novel quinazolino-[beta]-carboline-5-one derivatives. Bioorg Med Chem, 12(9), 1991-1994.
Baserga, R., & Wiebel, F. (1969). The cell cycle of mammalian cells. Int Rev Exp Pathol, 7, 1-30.
Blagosklonny, M. V. (2007). Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle, 6(1), 70-74.
Boonstra, J. J., van der Velden, A. W., Beerens, E. C., van Marion, R., Morita-Fujimura, Y., Matsui, Y., et al. (2007). Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7. Cancer Res, 67(17), 7996-8001.
Carroll, P. E., Okuda, M., Horn, H. F., Biddinger, P., Stambrook, P. J., Gleich, L. L., et al. (1999). Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene, 18(11), 1935-1944.
Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema, R., & Kroemer, G. (2004). Cell death by mitotic catastrophe: a molecular definition. Oncogene, 23(16), 2825-2837.
Chiou, W. F., Chou, C. J., Shum, A. Y., & Chen, C. F. (1992). The vasorelaxant effect of evodiamine in rat isolated mesenteric arteries: mode of action. Eur J Pharmacol, 215(2-3), 277-283.
Dodson, H., Bourke, E., Jeffers, L. J., Vagnarelli, P., Sonoda, E., Takeda, S., et al. (2004). Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J, 23(19), 3864-3873.
Dodson, H., Wheatley, S. P., & Morrison, C. G. (2007). Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle, 6(3), 364-370.
Dutertre, S., Descamps, S., & Prigent, C. (2002). On the role of aurora-A in centrosome function. Oncogene, 21(40), 6175-6183.
Fei, X. F., Wang, B. X., Li, T. J., Tashiro, S., Minami, M., Xing, D. J., et al. (2003). Evodiamine, a constituent of Evodiae Fructus, induces anti-proliferating effects in tumor cells. Cancer Sci, 94(1), 92-98.
Freed, E., Lacey, K. R., Huie, P., Lyapina, S. A., Deshaies, R. J., Stearns, T., et al. (1999). Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev, 13(17), 2242-2257.
Fukasawa, K. (2002). Introduction. Centrosome. Oncogene, 21(40), 6140-6145.
Fukasawa, K. (2007). Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer, 7(12), 911-924.
Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., & Vande Woude, G. F. (1996). Abnormal centrosome amplification in the absence of p53. Science, 271(5256), 1744-1747.
Griffin, C. S., Simpson, P. J., Wilson, C. R., & Thacker, J. (2000). Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol, 2(10), 757-761.
Grunberger, B., Raderer, M., Schmidinger, M., & Hejna, M. (2007). Palliative chemotherapy for recurrent and metastatic esophageal cancer. Anticancer Res, 27(4C), 2705-2714.
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70.
Hartwell, L. H., & Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science, 246(4930), 629-634.
Hu, C. P., Hsieh, H. G., Chien, K. Y., Wang, P. Y., Wang, C. I., Chen, C. Y., et al. (1984). Biologic properties of three newly established human esophageal carcinoma cell lines. J Natl Cancer Inst, 72(3), 577-583.
Huang, D. M., Guh, J. H., Huang, Y. T., Chueh, S. C., Chiang, P. C., & Teng, C. M. (2005). Induction of mitotic arrest and apoptosis in human prostate cancer pc-3 cells by evodiamine. J Urol, 173(1), 256-261.
Huang, X., Tran, T., Zhang, L., Hatcher, R., & Zhang, P. (2005). DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint. Proc Natl Acad Sci U S A, 102(4), 1065-1070.
Huang, Y. C., Guh, J. H., & Teng, C. M. (2004). Induction of mitotic arrest and apoptosis by evodiamine in human leukemic T-lymphocytes. Life Sci, 75(1), 35-49.
Hwang, A., & Muschel, R. J. (1998). Radiation and the G2 phase of the cell cycle. Radiat Res, 150(5 Suppl), S52-59.
Ianzini, F., & Mackey, M. A. (1997). Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol, 72(4), 409-421.
Kan, S. F., Huang, W. J., Lin, L. C., & Wang, P. S. (2004). Inhibitory effects of evodiamine on the growth of human prostate cancer cell line LNCaP. Int J Cancer, 110(5), 641-651.
Kelsen, D. P., Ginsberg, R., Pajak, T. F., Sheahan, D. G., Gunderson, L., Mortimer, J., et al. (1998). Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med, 339(27), 1979-1984.
Kleinberg, L., & Forastiere, A. A. (2007). Chemoradiation in the management of esophageal cancer. J Clin Oncol, 25(26), 4110-4117.
Ko, H. C., Chen, K. T., Chou, C. J., & Chen, C. F. (2002). Determination of dehydroevodiamine, evodiamine, rutaecarpine and synerphrine in Evodia genus plants from Taiwan and mainland China. J Chin Med, 13(3), 151-158.
Kok, T. C. (1997). Chemotherapy in oesophageal cancer. Cancer Treat Rev, 23(2), 65-85.
Kops, G. J., Weaver, B. A., & Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 5(10), 773-785.
Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., et al. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ, 12 Suppl 2, 1463-1467.
Lanni, J. S., & Jacks, T. (1998). Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol, 18(2), 1055-1064.
Law, S., Fok, M., Chow, S., Chu, K.-M., & Wong, J. (1997). Preoperative chemotherapy versus surgical therapy alone for squamous cell carcinoma of the esophagus: A prospective randomized trial. J Thorac Cardiovasc Surg, 114(2), 210-217.
Liao, C. H., Pan, S. L., Guh, J. H., Chang, Y. L., Pai, H. C., Lin, C. H., et al. (2005). Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis, 26(5), 968-975.
Loffler, H., Lukas, J., Bartek, J., & Kramer, A. (2006). Structure meets function--centrosomes, genome maintenance and the DNA damage response. Exp Cell Res, 312(14), 2633-2640.
Maipang, T., Vasinanukorn, P., Petpichetchian, C., Chamroonkul, S., Geater, A., Chansawwaang, S., et al. (1994). Induction chemotherapy in the treatment of patients with carcinoma of the esophagus. J Surg Oncol, 56(3), 191-197.
Mariette, C., Piessen, G., & Triboulet, J. P. (2007). Therapeutic strategies in oesophageal carcinoma: role of surgery and other modalities. Lancet Oncol, 8(6), 545-553.
Matsuoka, S., Huang, M., & Elledge, S. J. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 282(5395), 1893-1897.
Molz, L., Booher, R., Young, P., & Beach, D. (1989). cdc2 and the Regulation of Mitosis: Six Interacting mcs Genes. Genetics, 122(4), 773-782.
Musacchio, A., & Hardwick, K. G. (2002). The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol, 3(10), 731-741.
Nigg, E. A. (2002). Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer, 2(11), 815-825.
Nishihira, T., Kasai, M., Mori, S., Watanabe, T., Kuriya, Y., Suda, M., et al. (1979). Characteristics of two cell lines (TE-1 and TE-2) derived from human squamous cell carcinoma of the esophagus. Gann, 70(5), 575-584.
Nitta, M., Kobayashi, O., Honda, S., Hirota, T., Kuninaka, S., Marumoto, T., et al. (2004). Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene, 23(39), 6548-6558.
Nygaard, K., Hagen, S., Hansen, H. S., Hatlevoll, R., Hultborn, R., Jakobsen, A., et al. (1992). Pre-operative radiotherapy prolongs survival in operable esophageal carcinoma: A randomized, multicenter study of pre-operative radiotherapy and chemotherapy. The second scandinavian trial in esophageal cancer. World J Surg, 16(6), 1104-1109.
Oda-Sato, E., & Tanaka, N. (2007). Abnormal Centrosome Amplification and Aurora-A Activation in p53-deficient Cells. Journal of Nippon Medical Scool, 74(6), 384-385.
Ogasawara, M., & Suzuki, H. (2004). Inhibition by evodiamine of hepatocyte growth factor-induced invasion and migration of tumor cells. Biol Pharm Bull, 27(4), 578-582.
Okada, H., & Mak, T. W. (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer, 4(8), 592-603.
Paulovich, A. G., Toczyski, D. P., & Hartwell, L. H. (1997). When checkpoints fail. Cell, 88(3), 315-321.
Rieder, C. L., & Maiato, H. (2004). Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell, 7(5), 637-651.
Roninson, I. B., Broude, E. V., & Chang, B. D. (2001). If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat, 4(5), 303-313.
Rosenthal, E. T., Hunt, T., & Ruderman, J. V. (1980). Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam, Spisula solidissima. Cell, 20(2), 487-494.
Roth, J. A., Pass, H. I., Flanagan, M. M., Graeber, G. M., Rosenberg, J. C., & Steinberg, S. (1988). Randomized clinical trial of preoperative and postoperative adjuvant chemotherapy with cisplatin, vindesine, and bleomycin for carcinoma of the esophagus. J Thorac Cardiovasc Surg, 96(2), 242-248.
Russell, P., & Nurse, P. (1987). Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell, 49(4), 559-567.
Sato, N., Mizumoto, K., Nakamura, M., Ueno, H., Minamishima, Y. A., Farber, J. L., et al. (2000). A possible role for centrosome overduplication in radiation-induced cell death. Oncogene, 19(46), 5281-5290.
Schlag, P. M. (1992). Randomized trial of preoperative chemotherapy for squamous cell cancer of the esophagus. Arch Surg, 127(12), 1446-1450.
Shyu, K. G., Lin, S., Lee, C. C., Chen, E., Lin, L. C., Wang, B. W., et al. (2006). Evodiamine inhibits in vitro angiogenesis: Implication for antitumorgenicity. Life Sci, 78(19), 2234-2243.
Spacey, S. D., Gatti, R. A., & Bebb, G. (2000). The molecular basis and clinical management of ataxia telangiectasia. Can J Neurol Sci, 27(3), 184-191.
Srsen, V., & Merdes, A. (2006). The centrosome and cell proliferation. Cell Div, 1, 26.
Stewart, Z. A., Westfall, M. D., & Pietenpol, J. A. (2003). Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci, 24(3), 139-145.
Tarapore, P., Horn, H. F., Tokuyama, Y., & Fukasawa, K. (2001). Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene, 20(25), 3173-3184.
Ueng, Y. F., Don, M. J., Peng, H. C., Wang, S. Y., Wang, J. J., & Chen, C. F. (2002). Effects of Wu-chu-yu-tang and its component herbs on drug-metabolizing enzymes. Jpn J Pharmacol, 89(3), 267-273.
van Meerten, E., & van der Gaast, A. (2005). Systemic treatment for oesophageal cancer. Eur J Cancer, 41(5), 664-672.
Vogel, C., Hager, C., & Bastians, H. (2007). Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Res, 67(1), 339-345.
Webb, A., Cunningham, D., Scarffe, J. H., Harper, P., Norman, A., Joffe, J. K., et al. (1997). Randomized trial comparing epirubicin, cisplatin, and fluorouracil versus fluorouracil, doxorubicin, and methotrexate in advanced esophagogastric cancer. J Clin Oncol, 15(1), 261-267.
Xie, W., Li, L., & Cohen, S. N. (1998). Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proc Natl Acad Sci U S A, 95(4), 1595-1600.
Xu, X., Weaver, Z., Linke, S. P., Li, C., Gotay, J., Wang, X. W., et al. (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell, 3(3), 389-395.
Zhang, Y., Wu, L. J., Tashiro, S., Onodera, S., & Ikejima, T. (2004). Evodiamine induces tumor cell death through different pathways: apoptosis and necrosis. Acta Pharmacol Sin, 25(1), 83-89.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top