(3.227.249.155) 您好!臺灣時間:2021/05/07 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉蓓麗
研究生(外文):Phui-Ly Liew
論文名稱:肥胖病人非酒精性脂肪肝疾病與發炎因子:探討TumorNecrosisFactor-alpha,Leptin和Adiponectin的角色
論文名稱(外文):Inflammatory Cytokines in Nonalcoholic Fatty Liver Disease in Obese Patients: Role of Tumor Necrosis Factor-alpha, Leptin and Adiponectin
指導教授:陳志榮陳志榮引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:96
中文關鍵詞:非酒精性發炎性脂肪肝細胞激素脂肪細胞激素肝臟組織切片肥胖
外文關鍵詞:nonalcoholic steatohepatitiscytokinesadiponectinliver histopathologyobesity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肥胖是心血管疾病,腦中風,糖尿病及癌症的重要危險因子;高血壓、高血脂症、高膽固醇症、糖尿病及脂肪肝被認為是新陳代謝症候群(metabolic syndrome)。很多研究顯示,肥胖是一種慢性、低度發炎疾病(low grade inflammation),發炎因子在各種新陳代謝症候群中扮演重要的角色。非酒精性脂肪肝疾病(nonalcoholic fatty liver disease, NAFLD)是一群因脂肪囤積而引起廣泛性肝臟細胞破壞引起疾病的統稱,它的病程包括單純性脂肪肝(liver steatosis)、脂肪性肝臟發炎(steatohepatitis)、肝臟纖維化(liver fibrosis)及肝硬化(liver cirrhosis)。確切的診斷及嚴重度之評斷需藉助病理切片檢查。
非酒精性脂肪肝疾病的致病機轉仍未完全明瞭,目前最被人接受的是“兩次撞擊”的假說,“第一次撞擊(first hit)”是脂肪囤積在肝臟細胞,與胰島素抗性(insulin resistance)有密切關係。大部份的病人可能只有單純脂肪肝卻沒有伴隨發炎反應,這種疾病的病程是比較良性的。但是若合併發炎反應,即進入“第二次撞擊(second hit)”,它所引發的發炎反應就變得很複雜,牽涉到很多不正常細胞激素產生(abnormal cytokine production)及氧化壓力反應(oxidative stress)的作用,其中最著名的細胞激素是adiponectin,tumor necrosis factor -?? ( TNF-??)和leptin。TNF-?悇O一種前發炎因子(proinflammatory cytokine)。Leptin 則與肝臟纖維化有關。Adiponectin是目前被研究較多的cytokine,它具有明顯抗發炎性(anti-inflammatory effect)及胰島素敏感化(insulin sensitivity)的作用,與NAFLD的發生有密切的關連。
非酒精性脂肪肝疾病的致病機轉與發炎因子應有明顯的關係,本研究以BMI?d35以上的台灣肥胖病人肝臟組織,分析Leptin,TNF-?恁AAdiponectin及Adiponectin Receptor II(adipoRII)的表現與相互間的關係,藉此探討非酒精性脂肪肝疾病的致病機轉。同時以病理組織學的變化,佐以臨床資料與血液生化檢查結果(年齡、性別,腰臀比、血糖、血脂、肝功能指數),研究Leptin,TNF-?恁AAdiponectin及Adiponectin Receptor II與肝臟受損程度,肝臟纖維化與臨床資料的相關性。
本研究包含四十位肥胖病人,共12位男性,28位女性,平均年齡為29.43 ± 9.19歲,平均BMI 為 44.79 ± 5.37 kg/m2。四十位肥胖病人中有30 位(75 %)診斷為非酒精性脂肪性肝發炎(nonalcoholic steatohepatitis,NASH)。我們將病人分成三組作研究:第一組為非酒精性脂肪性肝發炎(nonalcoholic steatohepatitis,NASH)合併0-1期肝臟纖維化,共11 位病人。第二組為非酒精性脂肪性肝發炎合併2-4期肝臟纖維化,共19 位病人。第三組包括10 位病人,因只有單純脂肪肝卻沒有伴隨發炎反應,被歸類為對照組。臨床抽血資料顯示, aspartate transaminase (AST) (p =0.000)、 alanine transaminase (ALT) (p =0.000)、 γ-glutamyl transferase (GGT)(p =0.045) 和hemoglobin A1c (HbA1c)(p =0.001) 在三組病人中具有統計學上的差異。
在病理切片組織學方面,總共36(90%)位病人發現單純脂肪囤積在肝臟細胞。肝臟細胞汽球化退化(ballooning degeneration)存在於所有的肝臟發炎(steatohepatitis)病人。三十九(97.5%)位病人表現肝小葉發炎(lobular inflammation),有11 位 (27.5%)表現輕度、 13 位(32.5%)表現中度和15位(37.5%)表現嚴重程度肝小葉發炎。四十位肥胖病人中,沒有任何一位進展到肝硬化。本研究無法偵測到肝臟leptin的mRNA表現。另一方面,不管是TNF-α/GAPDH cDNA,adiponectin/GAPDH cDNA或是adipoRII /GAPDH cDNA的肝臟mRNA表現,也沒有達到統計學上的差異。
臨床病理相關性方面,我們發現單純脂肪囤積在肝臟細胞與血糖、AST、 ALT、GGT、三酸甘油脂和HbA1c有關;卻和高密度脂蛋白(high density lipoprotein)成負相關。肝臟細胞汽球化退化(ballooning degeneration) 與血糖、AST、 ALT和HbA1c也有相關性。另一方面,肝小葉發炎(lobular inflammation)和 AST、ALT 和HbA1c有關。至於肝臟纖維化則和AST、 ALT 和 C-peptide有關。Adiponectin/GAPDH cDNA和尿酸成負相關性; TNF-α/GAPDH cDNA ratio 則與單純脂肪囤積在肝臟細胞有關。免疫組織染色方面,leptin的免疫染色表現與C-peptide、 門脈區發炎(portal inflammation)有相關性。AdipoRII與收縮壓成負相關性; 與Mallory body、 glycogenated nuclei成正相關性。TNF-α的免疫染色表現和AST、血紅素、肝小葉發炎、門脈區發炎和NAS activity有關。而adiponectin的免疫染色表現則沒有達到統計學上的相關性。
胰島素抗性(insulin resistance)和人體對胰島素敏感度降低是非酒精性脂肪肝疾病重要特徵。在本研究中,我們無法釐清TNF-α、 leptin、 adiponectin、adipoRII和單純脂肪囤積在肝臟細胞、 肝臟發炎和肝臟纖維化的關係,未來需要更大、更深入的研究來探討非酒精性脂肪肝疾病與肝臟纖維化的致病機轉。我們的研究也透露出胰島素抗性(insulin resistance),不管是肝臟或是週邊的胰島素抗性,似乎比不正常細胞激素產生(abnormal cytokine production)與發炎因子扮演更重要的角色。
Obesity is a chronic inflammatory condition and obesity has been claimed one of risk factors for cardiovascular disease, stroke, diabetes mellitus and cancers. The metabolic syndrome includes hypertension, hyperlipidemia, diabetes mellitus and fatty liver disease. Nonalcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of systemic metabolic syndrome. NAFLD is a wide spectrum of liver damage, ranging from simple steatosis, to nonalcoholic steatohepatitis (NASH) and cirrhosis on the basis of longstanding fatty change of the liver. While NASH implies a risk of progressive liver disease, simple steatosis is regarded as a benign condition.
The “two hit hypothesis” has become an important theoretical framework for understanding the pathogenesis of NAFLD. The “first hit” is liver fat accumulation in hepatocytes, linked with insulin resistance. In the majority of patients with excess liver fat or scarce hepatic inflammation, this condition will be termed simple steatosis. However, a “second hit” may trigger the necroinflammatory response characterizing NASH through abnormal cytokine production and oxidative stress. The mediated abnormal cytokine production including adiponectin, leptin and tumor necrosis factor -?恁]TNF-?恁^. TNF-?? is a proinflammatory cytokine, whereas leptin has fibrogenetic effect. In contrast, adiponectin play antidiabetic and anti-inflammatory role that acts as a fascinating mediator linking adipose tissue, insulin resistance, and inflammation. Adiponectin may have protective effect on the development of NAFLD, potentially antagonizing the effect of TNF-??.
Although the participation of inflammatory mediators and cytokines in the pathogenesis of NAFLD is widely recognized, their relative important in Taiwanese obese patients is not fulfilled. In this study, we analyzed the clinicopathology of morbidly obese patients (BMI?d35) from liver biopsied specimens. To further elucidate the role of inflammation in NAFLD, we evaluated mRNA and protein expression of leptin, TNF-??, and anti-inflammatory factor adiponectin and adiponectin receptor II (adopoRII) in liver tissues of NAFLD patients.
Our study enrolled 40 obese patients, including 12 men and 28 women with mean age 29.43 ± 9.19 years, and the mean BMI was 44.79 ± 5.37 kg/m2. Histologic evidence of NASH (NAS ≧5) was present in 30 patients (75%). Of these 30 patients, 11 patients were grouped as NASH with stage 0-1 mild liver fibrosis and 19 patients were grouped as NASH with stage 2-4 advanced liver fibrosis. The other 10 patients had normal liver histology or simple steatosis only without necroinflammation (NAS<3) and they were considered as control group. The serum levels of alanine transaminase (ALT) (p =0.000), aspartate transaminase (AST) (p =0.000), γ-glutamyl transferase (GGT) (p =0.045) and hemoglobin A1c (HbA1c) (p =0.001) have statistically difference in these three groups. Only AST was independently different after multivariate logistic regression analysis.
Hepatic steatosis was present in 36 patients (90%). Ballooning degeneration of hepatocytes was occurred in all NASH group. Lobular inflammation found in 39 patients (97.5%). Of these 39 patients, 11 (27.5%), 13 (32.5%) and 15 (37.5%) presented with mild, moderate and severe lobular inflammation. Regarding the stage of fibrosis, only one patient presented without fibrosis. No obvious stage 4 fibrosis (or liver cirrhosis) was noted in any of the cases. The mRNA of leptin was undetectable in the liver tissue of any cases in our study. TNF-α/GAPDH cDNA ratio was highest in patients without NASH, while the adiponectin/GAPDH cDNA ratio tended to be higher in NASH with advanced liver fibrosis. In contrast, the adipoRII/GAPDH cDNA ratio was lower in NASH with advanced liver fibrosis. All the mRNA levels of the studied genes have not reached significantly different. Immunohistochemistry, adiponectin and adipoRII staining were less pronounced in liver sinusoids in NASH group compared with non-NASH group. In contrast, leptin staining was more pronounced in liver tissues of NASH group with advanced liver fibrosis. However, no significant difference between three groups was noted.
The clinicopathological correlation demonstrated that the degree of hepatic steatosis was best correlated with fasting sugar, AST, ALT, GGT, triglyceride and HbA1c. Inverse relationship was noted between hepatic steatosis and high density lipoprotein. Independent predictors of ballooning degeneration were serum fasting sugar, AST, ALT and HbA1c. The best predictors of lobular inflammation were AST, ALT and HbA1c. The predictors for liver fibrosis were AST, ALT and C-peptide. In addition, the predictor for adiponectin/GAPDH cDNA ratio was inversely correlated to uric acid level; and the predictor for TNF-α/GAPDH cDNA ratio was related to liver steatosis. Immunohistochemistry study showed that the best predictors of leptin expression were correlated with C-peptide and portal inflammation. AdipoRII immunohistochemical stain was inversely related with systolic blood pressure; and positively associated Mallory body and glycogenated nuclei. Finally, the predictors for TNF-α immunohistochemical expression were AST, hemoglobin, lobular inflammation, portal inflammation and NAS activity. No significantly predictor of adiponectin immunohistochemical expression was noted.
Insulin resistance and reduced whole-body insulin sensitivity are major characteristics of NAFLD. In our study, we could not completely address the complex association between TNF-α, leptin and adiponectin/adipoRII, insulin, liver steatosis, necroinflammation, and liver fibrosis. Therefore, the possibility that all these adipocytokines could influence necroinflammation and fibrosis, finally to the functional severity in NASH, is not completely understood. Larger studies are needed to fully establish the pathogenesis and mechanisms of fat accumulation in the liver and the progression to fibrosis. Finally, the relationship between hepatic and peripheral insulin resistance and the development of hepatic steatosis should be clarified in future research.
目錄
……………………………………………………………………………1
第一章中文摘要 (Abstract in Chinese)
……………………………………………………………………………3
第二章英文摘要 (Abstract in English)
……………………………………………………………………………6
第三章緒論 (Introduction)
……………………………………………………………………………10
3.1 Nonalcoholic fatty liver disease (NAFLD) and Nonalcoholic steatohepatitis (NASH)
……………………………………………………………………………10
3.2 The Pathogenesis of Nonalcoholic steatohepatitis (NASH)
……………………………………………………………………………13
3.3 Adipose tissue acts as endocrine organ
……………………………………………………………………………15
3.4 Cytokines: metabolic syndrome and obesity
……………………………………………………………………………17
3.5 Liver: local manifestation of systemic insulin resistance
……………………………………………………………………………19
3.6 Cellular injury in liver
……………………………………………………………………………22
3.7 Central role of TNF-α
……………………………………………………………………………24
3.8 leptin
……………………………………………………………………………28
3.9 Adiponectin and its receptors
……………………………………………………………………………31
3.10 Role of TNF-α, leptin, adiponectin and its receptors
……………………………………………………………………………36
3.11Aims of our study
……………………………………………………………………………39
第四章研究方法與材料 (Materials and Methods)
……………………………………………………………………………40
4.1 Study Design, Patient Selection and Laparoscopic surgery
……………………………………………………………………………40
4.2 Laboratory Measurements
……………………………………………………………………………41
4.3 Pathological Assessment
……………………………………………………………………………41
4.4 Definition of NASH
……………………………………………………………………………42
4.5 RNA Isolation
……………………………………………………………………………43
4.6 Fluorescence based real time polymerase chain reaction analysis
……………………………………………………………………………43
4.7Immunohistochemistry
……………………………………………………………………………45
4.8 Statistical Analysis
……………………………………………………………………………46
第五章實驗結果 (Results)
……………………………………………………………………………47
5.1 Clinical characteristics
……………………………………………………………………………47
5.2 Pathological findings
……………………………………………………………………………48
5.3 Detection of mRNA of Leptin, Adiponectin, AdipoRII and TNF-α in liver of NASH patients
……………………………………………………………………………49
5.4 Immunohistochemical study of expression of Leptin, Adiponectin, AdipoRII and TNF-α in liver tissues of NASH patients
……………………………………………………………………………50
5.5 Association between Clinical, Laboratory Data and Histological Features
……………………………………………………………………………50
5.6 Association between Cytokines mRNA expression, Clinical, Laboratory Data and Histological Features
……………………………………………………………………………51
5.7 Association between Immunohistochemical study, Clinical, Laboratory Data and Histological Features
……………………………………………………………………………51
第六章討論 (Discussion)
……………………………………………………………………………53
第七章結論與展望 (Conclusion and Perspective)
……………………………………………………………………………69
第八章參考文獻 (References)
……………………………………………………………………………70
第九章圖表 (Tables and Figures)
……………………………………………………………………………81
Abate N, Chandalia M, Snell PG, et al. Adipose tissue metabolites and insulin resistance in nondiabetic Asian Indian men. J Clin Endocrinol Metab 2004; 89: 2750-5.
Abrams GA, Kunde SS, Lazenby AJ et al. Portal fibrosis and hepatic steatosis in morbidly obese subjects: A spectrum of nonalcoholic fatty liver disease. Hepatology 2004; 40: 475-83.
Akerman P, Cote P, Yang S Q, et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol 1992; 263: G579–85.
Angulo P, Alba LM, Petrovic LM, et al. Leptin, insulin resistance and liver fibrosis in human nonalcoholic faty liver disease. J Hepatol 2004; 41: 943-9.
Angulo P, Keach JC, Butts KP et al. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 1999; 30: 1356- 62.
Arner P. Insulin resistance in type 2 diabetes – role of the adipokines. Curr Mol Med 2005; 5: 333-9.
Ballantyne GH, Gumbs A, Modlin IM. Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin,adiponectin and resistin. Obes Surg 2005; 15: 692-9.
Berg AH and Scherer PE. Adipose tissue, inflammation and cardiovascular disease. Cir Res 2005; 96: 939-49.
Browning JD and Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114: 147-52.
Brunt EM, Janney CG, Bisceglie AMD et al. Nonalcoholic steatohepatitis: A proposal for grading and staging histologic lesions. Am J Gastroenterol 1999; 94:2467- 74.
Bugianesi E, Pagotto U, Manini R et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab 2005; 90: 3498-3504.
Cayon A, Crespo J, Mayorga M et al. Increased expression of Ob-Rb and its relationship with the overexpression of TGF-β1 and the stage of fibrosis in patients with nonalcoholic steatohepatitis. Liver Int 2006; 26: 1065-71.
Chalasani N, Crabb DW, Cummings OW, et al. Does Leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis? Am J Gastroenterol 2003: 98: 2771-6.
Chitturi S, Farrell G, Frost L, et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: A manifestation of lipotoxicity? Hepatology 2002; 36: 403-9.
Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis 2001; 21: 27-41.
Christi AM, Younossi ZM, Gramlich T. Nonalcoholic Fatty Liver Disease: A Spectrum of Clinical and Pathological Severity. Gastroenterology 1999; 116: 1413-19.
Considine RV, Sinha MK, Heiman ML et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292-5.
Cressman D E, Greenbaum L E, Deangelis R A, et al. Liver failure and defective hepatocyte regeneration in interleukin- 6-deficient mice. Science 1996; 274: 1379–83.
Day CP and James OFW. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998; 114: 842-5.
Delaigle AM, Jonas JC, Bauche IB et al. Induction of adiponectin in skeletal muscle by inflammatory cytokines in vivo and in vitro studies. Endocrinology 2004; 145: 5589-97.
Despres J-P and Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444: 881-7.
Diehl AM. Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8: 619-38.
Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87: 2095–147.
Ding X, Saxena NK, Lin S et al The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol 2005; 166: 1655-69.
Dixon JB, Bhathal PS, O’Brien PE. Nonalcoholic fatty liver disease: Predictors of nonalcoholic steatohepatitis and liver fibrosis in severely obese. Gastroenterology 2001; 121: 91- 100.
Feinstein ZR, Kanety H, Papa MZ, et al. Tumor necrosis factor- suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 1993; 268: 26055-58.
Frank S, Stallmeyer B, Kampfer H, et al. Leptin enhances wound re-epithelization and constitutes a direct function of leptin in skin repair. J Clin Invest 2000; 106: 501-9.
Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763-70.
Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247–50.
Gao B, Jeong W-I and Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47: 729-36.
Gholam PM, Kotler DP, Flancbaum LJ. Liver pathology in morbidly obese patients undergoing Roux-en-Y gastric bypass surgery. Obes Surg 2002; 12: 49-51.
Giannini E, Botta F, Cataldi, A, et al. Leptin levels in nonalcoholic steatohepatitis and chronic hepatitis C. Hepatogastroenterology 1999; 46: 2422-5.
Gu HF, Abulaiti A, Ostenson C-G et al. Single nucleotide polymorphisms in proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians. Diabetes 2004; 53: S31-35.
Hara K, Boutin P, Mori Y et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002; 51: 536-40.
Harnois F, Msika S, Sabate JM et al. Prevalence and predictive factors of non-alcoholic steatohepatitis (NASH) in morbidly obese patients undergoing bariatric surgery. Obes Surg 2006; 16: 183-8.
Haukeland JW, Damas JK, Konopski Z et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 2006; 44: 1167-74.
Hoek JB, Pastorino JG. Cellular signaling mechanisms in alcohol-induced liver damage. Semin Liver Dis 2004; 24: 257-72.
Honda H, Ikejima K, Hirose M, et al. Leptin is required for fibrogenic reponses indiced by thioacetamide in murine liver. Hepatology 2002; 36: 12-21.
Hotamisligil GS, Shargill NS and Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 1993; 259: 87-91.
Hotamisligil GS and Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994; 43: 1271-78.
Huang KC, Lin RC, Kormas N, et al. Plasma leptin is associated with insulin resistance independent of age, body mass index, fat mass, lipids and pubertal development in nondiabetic adolescents. Int J Obes 2004; 28: 470-5.
Hui JM, Hodge A, Farrell G C, Kench JG, Kriketos A, George J. Beyond insulin resistance in NASH: TNFalpha or adiponectin? Hepatology 2004; 40: 46–54.
Ikejima K, Takei Y, Honda H et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology 2002; 122: 1399-1410.
Kadowaki T, Yamauchi T, Kubota N et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116: 1784-92.
Kamada Y, Tamura S, Kiso S et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003; 125: 1796-1807.
Kaplan LM. Leptin, obesity, and liver disease. Gastroenterology 1998; 115: 997-1001.
Kaser S, Moschen A, Cayon A et al. Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut 2005; 54: 117-21.
Kaser S, Moschen A, Kaser A et al. Circulating adiponectin reflects severity of liver diseases but not insulin sensitivity in liver cirrhosis. J Intern Med 2005; 258: 274-80.
Kleiner DE, Brunt EM, Natta MV et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41:1313- 21.
Kobayashi K. Adipokines: therapeutic targets for metabolic syndrome. Curr Drug Targets 2005; 6: 525-9.
Lafontan M. Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 2005; 45: 119-46.
Leclercq IA, Farrell GC, Schriemer R et al. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol 2002; 37: 206-13.
Leist M, Gantner F, Bohlinger I et al. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J Immunol 1994; 153: 1778-88.
Liew P-L, Lee W-J, Lee Y-C et al. Hepatic Histopathology of Morbid Obesity: Concurrence of Other Forms of Chronic Liver Disease. Obes Surgery 2006; 16: 1584-93.
Lima MLRP, Mourao SCO, Dinz MTC et al. Hepatic histopathology of patients with morbid obesity submitted to gastric bypass. Obes Surg 2005; 15: 661-69.
Lin HZ, Yang SQ, Chuckaree C et al. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 2000; 9: 998-1003.
Li Z, Yang S, Lin H et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003; 37: 343-50.
Lonardo A, Carani C, Caruli N, et al. “Endocrine NAFLD” a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J Hepatol 2006; 44: 1196-1207.
Lord GM, Matarese G, Howard JK, et al. Leptin modulates the T-cell immune response and reserves starvation-induced immunosuppression. Nature 1998; 394: 891-901.
Ludwig J, Viggiona TR, McGill DB et al. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hither to unnamed disease. Mayo Clin Proc 1980; 55: 434- 38.
Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 2003; 144: 2195-200.
Machado M, Cortez-Pinto H. Non-alcoholic fatty liver disease and insulin resistance. Eur J Gastroenterol Hepatol 2005; 17: 823-6.
Maeda N, Shimomura I, Kishida K et al. Diet-induced insulin resistance in mice lacking adiponectin/ ACRP30. Nat Med 2002; 8: 731-37.
Mantzoros CS. The role of leptin in human obesity and disease: A review of current evidence. Ann Intern Med 1999; 130: 671-80.
Marra F. Leptin and liver tissue repair. J Hepatol 2007; 46: 12-8.
Massip-Salcedo M, Zaouali MA, Padrissa-Altes S et al. Activation of peroxisome proliferators-activated receptor-α inhibits the injurious effects of adiponectin in rat steatotic liver undergoing ischemia-reperfusion. Hepatology 2008; 47: 461-72.
Matteoni C, Younossi ZM, Gramlich T et al. Nonalcoholic fatty liver disease: A spectrum of clinical and pathology severity. Gastroenterology 1999; 116: 1413- 19.
McCullough AJ, Falck-Ytter. Body composition and hepatic steatosis as precursors for fibrotic liver disease. Hepatology 1999; 29: 1328-9.
Molina A, Vendrell J, Gutierrez C et al. Insulin resistance, leptin and TNF-α system in morbidly obese women after gastric bypass. Obes Surg 2003; 13: 615-21.
Moretto M, Kupski C, Mottin CC et al. Hepatic steatosis in patients undergoing bariatric surgery and its relationship to body mass index and co-morbidities. Obes Surg 2003; 13: 622-24.
Musso G, Gambino R, Durazzo M, et al. Adipokines in NASH: Postprandial lipid metabolism as a link between adiponectin and liver disease, Hepatology 2005; 42: 1175-83.
Nakao K, Nakata K, Ohtsubo N, et al. Association between nonalcolic fatty liver, markers of obesity, and serum leptin level in young adults. Am J Gastroenterol 2002; 97:1796-801.
Nannipieri M, Bonotti A, Anselmino A et al. Pattern of expression of adiponectin receptors in human adipose tissue depots and its relation to the metabolic state. Int J Obesity 2007; 31: 1843-8.
Orange J S, Salazar-Mather T P, Opal S M, Biron C A. Mechanisms for virus-induced liver disease: tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection. J Virol 1997; 71: 9248–58.
Papadia FS, Marinari GM, Camerini G et al. Liver damage in severely obese patients: a clinical-biochemical-morphologic study on 1,000 liver biopsies. Obes Surg 2004; 14: 952-58.
Petit JM, Minello A, Jooste V et al. Decreased plasma adiponectin concentrations are closely related to steatosis in hepatitic C virus-infected patients. J Clin Endocrinol Metab 2005; 90: 2240-3.
Potter JJ, Womack L, Mezey E et al. Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem Biophys Res Commun. 1998; 244:178-82.
Ratziu V, Giral P, Charlotte F et al. Liver fibrosis in overweight patients. Gastroenterology 2000; 118: 1117-23.
Saxena NK, Ikeda K, Rockey DC et al. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology 2002; 35: 762-71.
Shalhub S, Parsee A, Gallagher SF et al. The importance of routine liver biopsy in diagnosing nonalcoholic steatohepatitis in bariatric patients. Obes Surg 2004; 14: 54-9.
Shoelson SE, Lee J and Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116: 1793-1801.
Spaulding L, Trainer T, Janiec D. Prevalence of nonalcoholic steatohepatitis in morbidly obese subjects undergoing gastric bypass. Obes Surg 2003; 13: 347-9.
Spranger J, Kroke A, Mohlig M, Bergmann M M,Ristow M, Boeing H, Pfeiffer A F. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003; 361: 226–8.
Staiger H, Kausch C, Guirguis A et al. Induction of adiponectin gene expression in human myotubes by an adiponectin-containing HKE293 cell culture supernatant. Diabetologia 2003; 46: 956-60.
Stumvoll M, Tschritter O, Fritsche A et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity. Diabetes 2002; 51: 37-41
Tietge UJF, Boker KHW, Manns MP and Bahr MJ. Elevated circulating adiponectin levels in liver cirrhosis are associated with reduced liver function and altered hepatic hemodynamics. Am J Physiol Endocrinol Metab 2004; 287; E82-E89.
Tilg H, Diehl A M. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med 2000; 343: 1467–76.
Tilg H and Hotamisligil GS. Nonalcoholic Fatty Liver Disease: Cytokine-Adipokine Interplay and regulation of insulin resistance. Gastroenterology 2006; 131: 934-45.
Tomita K, Tamiya S, Ando S et al. Tumor necrosis factor α signaling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006; 55: 415-24.
Tracey K J, Cerami A. Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 1993; 9: 317–43.
Trauner M, Meier P J, Boyer J L. Molecular pathogenesis of cholestasis. N Engl J Med 1998; 339: 1217–27.
Uno K, Katagiri H, Yamada T, et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 2006; 312: 1656-59.
Uygun A, Kadayifci A, Yesilova Z, et al. Serum leptin levels in patients with nonalcoholic steatohepatitis. Am J Gastroenterol 2000; 95:3584-49.
Valenti L, Fracanzani AL, Dongiovanni P et al. Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastroenterology 2002; 122: 274-80.
Vasseur F, Helbecque N Dina C et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Human Molecular Genetics 2002; 11: 2607-14.
Visser M, Bouter LM, McQuillan GM, et al. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999; 282: 2131-35.
Vuppalanchi R, Marri S, Kolwanker D et al. Is adiponectin involved in the pathogenesis of nonalcoholic steatohepatitis? A preliminary human study. J Clin Gastroenterol 2005; 39: 237-42.
Wang PYT, Caspi L, Lam CKL, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature letter 2008: 1-5
Wang Y, Xu LY, Lam KSL et al. Proteomic characterization of human serum proteins associated with the fat-derived hormone adiponectin. Proteomics 2006; 6: 3862-70.
Wolf AM, Wolf D, Avila MA, et al. Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J Hepatol 2006; 44: 537-43.
Wolf G. Insulin resistance and obesity: resistin, a hormone secreted by adipose tissue. Nutr Rev 2004; 62: 389-94.
Xu A, Wang Y, Keshaw H, Xu LY, Lam K S, Cooper G J. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112: 91–100.
Yamada Y, Fausto N. Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol 1998; 152: 1577–89.
Yamauchi T, Kaman J, Ito Y et al. Cloning of adiponectin receptors that mediate antidiabetic effect. Nature 2003; 423:762-9.
Yamauchi T, Nio Y, Maki T et al. Targeted distribution of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Medicine 2007; 13: 332-9.
Yang SQ, Lin HZ, Lane MD et al. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA 1997; 94: 2557-62.
Yokota T, Oritani K, Takahashi I et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of marcophages. Blood 2002; 96: 1723-32.
Younossi ZM, Gramlich T, Matteoni CA et al. Nonalcoholic fatty liver disease in patients with type 2 diabetes. Clin Gastroenterol Hepatol 2004; 2: 262-5.
Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ Res 2005; 96: 1042-52.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔