(3.238.96.184) 您好!臺灣時間:2021/05/15 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳鋼治
研究生(外文):Gong-Jhe Wu
論文名稱:麻醉藥物propofol與ketamine抑制巨噬細胞功能的分子機轉研究
論文名稱(外文):MOLECULAR STUDIES ON THE SUPPRESSIVE EFFECTS OF PROPOFOL AND KETAMINE ON MACROPHAGE FUNCTION
指導教授:陳大樑陳大樑引用關係
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:133
中文關鍵詞:KetaminePropofol巨噬細胞
外文關鍵詞:KetaminePropofolMacrophage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
手術前後期間免疫系統的調節與維持平衡是非常重要的議題。免疫系統失調會造成嚴重的術後合併症,甚至影響病患長期的結果。手術麻醉長久以來就被認為會影響免疫與發炎反應,無論是經由直接影響免疫活性細胞或是間接調節壓力反應的結果。雖然有許多in vitro與 in vivo研究,目前仍無定論。但是越來越多的研究結果顯示麻醉藥物會抑制免疫發炎反應,特別是對一些免疫功能異常、加護病房的重症病患甚至癌症病患,上述高危險群病患,很容易因為免疫功能失調而產生SIRS(systemic inflammatory response syndrome)、MODS(multiple organ dysfunction syndrome),甚至死亡。除了手術麻醉外,更大的挑戰是加護病房中重症病患的鎮靜(ICU sedation),而加護病房的鎮靜藥物又幾乎是靜脈麻醉藥物。所以靜脈麻醉藥物的免疫調控研究對上述高危險群病患是有其臨床意義的。
本研究的目的是探討臨床上常用的兩種靜脈麻醉藥物:propofol與ketamine的免疫調控作用,利用in vitro研究方法觀察其對巨噬細胞功能的影響與其對發炎性細胞素(proinflammatory cytokines)基因表現調控的訊息傳遞機轉。
本研究分四個部分進行,第一部分探討propofol對巨噬細胞吞噬作用、氧化能力、細胞素生成的影響;第二部分探討propofol對巨噬細胞驅化性移動的影響;第三部分探討ketamine對tumor necrosis factor-???n(TNF-?恁^與Interleukin-6(IL-6)基因表現的訊息傳導機轉;第四部分探討propofol對IL-6基因表現的訊息傳導機轉。希望能釐清靜脈麻醉藥物的免疫調控機轉並能對高危險手術與重症病患的照顧有所助益。
第一部分的研究結果顯示在臨床相關濃度(clinically relevant concentration)的propofol會抑制巨噬細胞的吞噬作用、氧化能力、發炎性細胞素的生成。其作用機轉是作用在粒線體,影響粒線體膜電位(mitochondrial membrane potential),進而影響ATP的生成,而並非propofol對細胞的毒性作用。
第二部分的研究結果顯示臨床治療濃度的propofol(50 ?嵱)會專一性的抑制粒線體膜電位,而不是complex I NADH去氫酶活性,進而影響ATP生成與巨噬細胞的驅化性移動。
第三部分的研究結果顯示ketamine在臨床治療濃度會抑制LPS活化之巨噬細胞TNF-?恁AIL-6 protein與mRNA的生合成。在訊息傳導機轉的探討,我們先使用siRNA的方式knockdown TLR-4,結果會降低TNF-?捋PIL-6的產生,同時給予ketamine與TLR-4 siRNA會使TNF-?捋PIL-6的產生更加減少。接下來我們也發現ketamine會抑制JNK磷酸化,降低c-jun translocation到細胞核,最後還會抑制轉錄因子activator protein-1(AP-1)的接合能力。由以上的結果,我們可以推論ketamine抑制TNF-?捋PIL-6發炎基因表現是經由TLR-4 / JNK / AP-1的訊息傳遞機轉。
第四部分的研究結果顯示propofol在臨床相關濃度會抑制LPS活化之巨噬細胞IL-6 protein與mRNA的生合成。在訊息傳遞機轉的探討,我們發現propofol會抑制TLR-4 mRNA生成,減少磷酸化JNK與下游c-jun translocation到細胞核,進而影響轉錄因子AP-1的結合能力。由以上結果可推論propofol的免疫抑制作用是經由TLR-4 / JNK / AP-1的訊息傳導機轉。
綜合而言,本研究顯示在in vitro巨噬細胞的模型下,臨床上常使用的兩種靜脈麻醉藥propofol與ketamine,在臨床相關的濃度下都會造成巨噬細胞功能的抑制,特別是對發炎細胞素基因調控的訊息傳導機轉都是經由TLR-4 / JNK / AP-1路徑。越來越多的動物及人體研究顯示,麻醉藥物本身是具有免疫調控作用。這種免疫抑制與抗發炎反應對高危險群手術麻醉與加護病房鎮靜病患是有其臨床意涵,而此種免疫調控作用是否會造成長期後果的影響則需要更多研究來證明。
Anesthesia accompanied by surgical stress may influence the immune system that is essential for maintaining the homeostasis during the perioperative period. Severe dysregulation of the immune system may cause serious postoperative complications. Anesthetic agents are suspected of impairing various aspects of the immune and inflammatory response, either directly by disturbing the functions of immune-competent cells or indirectly by modulation of the stress response. Despite there are many related studies, this topic remains a matter of controversy. Most investigational data have been confined to in vitro studies and are therefore separated from the homeostatic regulation network. Many in vivo studies have suggested that the immunomodulatory effects of anesthesia are negligible in comparison to the processes triggered by tissue injuries. Nevertheless, in patients with pre-existing immune dysfunctions, in high risk surgical patients, in cancer patients and even critically ill patient in intensive care unit for sedation, dysregulation of immune system may cause systemic inflammatory response syndrome, multiple organ dysfunction syndrome, and even death. The studies on immunomodulatory effects of anesthetics may have clinical implications.
The purpose of our study was to evaluate the immunomodulatory effects of two commonly used intravenous anesthetics: propofol and ketamine. We attempted to determine the effects of the two anesthetics on macrophage activities and possible signal-transducing mechanisms on cytokine genes regulation using in vitro model.
In this study, we would like to explore (1) the effects of propofol on macrophage activities: phagocytosis, oxidative ability and cytokine production, (2) the effect of propofol on macrophage chemotactic migration, (3) the signal-transducing mechanisms of ketamine in TNF-?? and IL-6 gene expression and (4) signal-transducing mechanisms of propofol in IL-6 gene expression. We hope the results can be valuable in elucidating the immunomodulatory effects of propofol and ketamine and also can be useful in daily clinical practice.
The results of the first part of the study demonstrated that at clinically relevant concentration, propofol can suppress macrophage activities such as phagocytosis, oxidative ability and LPS-induced cytokine production. The possible mechanism may be due to decrease mitochondrial membrane potential and adenosine triphospohate biosynthesis rather than cytotoxicity effect of propofol.
The results of the second part of the study showed that, therapeutic concentration of propofol (50 ?嵱) could specifically inhibit mitochondrial membrane potential but not complex I NADH dehydrogenase activity, thus reduce adenosine triphospohate biosynthesis and migration of macrophage.
The results of the third part revealed that therapeutic concentration of ketamine could inhibit lipopolysaccharide-stimulated macrophage TNF-?? and IL-6 protein and mRNA production. To explore the signal-transducing mechanism, by using siRNA technique to knockdown TLR-4, concomitant treatment of ketamine and TLR-4 siRNA further decrease of TNF-?n?? and IL-6 production more than alone administration of ketamine. Also we found ketamine can inhibit the downstream JNK phosphorylation, c-jun translocation to nucleus and AP-1 binding activity. We postulated the immunomodulatory effect of propofol might be via suppression of TLR-4-mediated JNK phosphorylation and AP-1 activation.
The results of the fourth part of the study showed that at clinical relevant concentration, propofol could inhibit IL-6 protein and mRNA production in LPS-activated macrophage. Signal-transducing mechanism demonstrated that propofol can inhibit TLR-4 mRNA, phosphorylated JNK, c-jun translocation to nucleus and transcription factor AP-1 binding activity. We postulated immunomodulatory effect of propofol might be through suppression of TLR-4-mediated JNK phosphorylation and AP-1 activation.
Collectively, the present study showed that in vitro macrophage model, clinically relevant concentrations of propofol and ketamine can suppress macrophage activities. The proposed signal transduction pathway of proinflammatory gene expression IL-6 and TNF-?? may through TLR-4-mediated JNK phosphorylation and AP-1 activation. The suppressive effects of propofol and ketamine may have clinical implications in susceptible patients. Further studies will be needed for the long-term effect of anesthetics on high risk surgical and critically ill patients.
中文摘要…………………………………………1
Abstract…………………………………………4
第一章 緒論………………………………………7
第二章 Propofol對巨噬細胞吞噬作用、氧化能力以及發炎性細胞素生成的抑制作用
第一節 前言……………………………………16
第二節 研究方法與材料………………………19
第三節 結果……………………………………25
第四節 討論……………………………………28
第五節 圖表……………………………………34
第三章 Propofol對巨噬細胞趨化性移動的抑制作用
第一節 前言……………………………………44
第二節 研究方法與材料………………………46
第三節 結果……………………………………50
第四節 討論……………………………………52
第五節 圖表……………………………………55
第四章 Ketamine抑制發炎性細胞素基因表現的訊息傳遞機轉
第一節 前言……………………………………60
第二節 研究方法與材料………………………63
第三節 結果……………………………………68
第四節 討論……………………………………73
第五節 圖表……………………………………79
第五章 Propofol抑制發炎性細胞素基因表現的訊息傳遞機轉
第一節 前言……………………………………91
第二節 研究方法與材料………………………93
第三節 結果……………………………………97
第四節 討論……………………………………101
第五節 圖表……………………………………105
第六章 結論與展望………………………………116
第七章 參考文獻…………………………………121
第八章 附錄………………………………………133
Aderem A. Role of Toll-like receptors in inflammatory response in macrophages. Crit Care Med 2001; 29: S16-18.
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124: 783-801.
Angus DC, Wax RS. Epidemiology of sepsis: an update. Crit Care Med. 2001; 7: S109-116.
Ayala A, Chaudry IH. Immune dysfunction in murine polymicrobial sepsis: Mediators, macrophages, lymphocytes and apoptosis. Shock 1996; 6: S27-38.
Bartoc C, Frumento RJ, Jalbout M, Bennett-Guerrero E, Du E, Nishanian E. A randomized, double-blind, placebo-controlled study assessing the anti-inflammatory effects of ketamine in cardiac surgical patients. J Cardiothorac Vasc Anesth 2006; 20: 217-222.
Bendtzen K. Interleukin 1, interleukin 6 and tumor necrosis factor in infection, inflammation and immunity. Immunol Lett 1988; 19: 183-191.
Bonta IL, Ben-Efraim S. Involvement of inflammatory mediators in macrophage antitumor activity. J Leukoc Biol 1993; 54: 613-626.
Bourgoin A, Albanèse J, Wereszczynski N, Charbit M, Vialet R, Martin C. Safety of sedation with ketamine in severe head injury patients: comparison with sufentanil. Crit Care Med 2003; 31: 711-717.
Brown GC, Borutaite V. Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 1999; 66: 17-25.
Bryson HM, Fulton BR, Faulds D. Propofol. An update of its use in anaesthesia and conscious sedation. Drugs 1995; 50: 513-559.
Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 3: 791-800.
Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987; 47: 936-942.
Casati A, Fanelli G, Casaletti E, Colnaghi E, Cedrati V, Torri G. Clinical assessment of target-controlled infusion of propofol during monitored anesthesia care. Can J Anaesth 1999; 46: 235-239.
Chamorro C, de Latorre FJ, Montero A, Sánchez-Izquierdo JA, Jareño A, Moreno JA, Gonzalez E, Barrios M, Carpintero JL, Martín-Santos F, Otero B, Ginestal R. Comparative study of propofol versus midazolam in the sedation of critically ill patients: results of a prospective, randomized, multicenter trial. Crit Care Med 1996; 24: 932-939.
Chang H, Tsai SY, Chang Y, Chen TL, Chen RM. Therapeutic concentrations of propofol protects mouse macrophages from nitric oxide-induced cell death and apoptosis. Can J Anaesth 2002; 49: 477-480.
Chang Y, Chen TL, Sheu JR, Chen RM. Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol 2005; 204: 27-35.
Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 1988; 4: 155-181.
Chen RM, Chen TG, Chen TL, Lin LL, Chang CC, Chang HC, Wu CH. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann NY Acad Sci 2005a; 1042: 262-271.
Chen RM, Chen TL, Lin YL, Chen TG, Tai YT. Ketamine reduces nitric oxide biosynthesis in human umbilical vein endothelial cells by down-regulating endothelial nitric oxide synthase expression and intracellular calcium levels. Crit Care Med 2005b; 33: 1044-1049.
Chen TG, Chen TL, Chang HC, Tai YT, Cherng YG, Chang YT, Chen RM. Oxidized low-density lipoprotein induces apoptotic insults to mouse cerebral endothelial cells via a Bax-mitochondria-caspase protease pathway. Toxicol Appl Pharmacol 2007; 219: 42-53.
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867.
Davidson JA, Boom SJ, Pearsall FJ, Zhang P, Ramsay G. Comparison of the effects of four i.v. anaesthetic agents on polymorphonuclear leucocyte function. Br J Anaesth 1995; 74: 315-318.
De La Cruz JP, Paez MV, Carmona JA, De La Cuesta FS. Antiplatelet effect of the anaesthetic drug propofol: Influence of red blood cells and leucocytes. Br J Pharmacol 1999; 128: 1538-1544.
Demiryurek AT, Cinel I, Kahraman S, Tecder-Unal M, Gogus N, Aypar U, Kanzik I. Propofol and intralipid interact with reactive oxygen species: a chemiluminescence study. Br J Anaesth 1998; 80: 649-654.
Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM. Morelli A, Torboli M, Bolognesi G, Baricordi OR. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 2001; 97: 587-600.
Diehl AM, Hoek JB. Mitochondrial uncoupling: role of uncoupling protein anion carriers and relationship to thermogenesis and weight control “the benefits of losing control”. J Bioenerg Biomembr 1999; 31: 493-506.
Domino EF, Zsigmond EK, Domino LE, Domino KE, Kothary SP, Domino SE. Plasma levels of ketamine and two of its metabolites in surgical patients using a gas chromatographic mass fragmentographic assay. Anesth Analg 1982; 61: 87-92.
Eriksson O: Effects of the general anaesthetic Propofol on the Ca2+- induced permeabilization of rat liver mitochondria. FEBS Lett 1991; 279: 45-48.
Fan H, Peck OM, Tempel GE, Halushka PV, Cook JA. Toll-like receptor 4 coupled GI protein signaling pathways regulate extracellular signal-regulated kinase phosphorylation and AP-1 activation independent of NFkappaB activation. Shock 2004; 22: 57-62.
Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53: 31-47.
Fredholm BB. Purines and neutrophil leukocytes. Gen Pharmacol 1997; 28: 345-350.
Froidevaux C, Roger T, Martin C, Glauser MP, Calandra T. Macrophage migration inhibitory factor and innate immune responses to bacterial infections. Crit Care Med 2001; 29: S13-S15.
Ganousis LG, Goon D, Zyglewska T, Wu KK, Ross D. Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites. Mol Pharmacol 1992; 42: 1118-1125.
Gao J, Zeng BX, Zhou LJ, Yuan SY. Protective effects of early treatment with propofol on endotoxin-induced acute lung injury in rats. Br J Anaesth 2004: 92: 277-279.
Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 1987; 66: 1256-1263.
Grant IS, Nimmo WS, McNicol LR, Clements JA. Ketamine disposition in children and adults. Br J Anaesth 1983; 55: 1107-1111.
Gurfinkel R, Czeiger D, Douvdevani A, Shapira Y, Artru AA, Sufaro Y, Mazar J, Shaked G. Ketamine improves survival in burn injury followed by sepsis in rats. Anesth Analg 2006; 103: 396-402.
Hall RI, Sandham D, Cardinal P, Tweeddale M, Moher D, Wang X, Anis AH. Propofol vs midazolam for ICU sedation: a Canadian multicenter randomized trial. Chest 2001; 119: 1151-1159.
Hare MF, Atchison WD. Differentiation between alterations in plasma and mitochondrial membrane potentials in synaptosomes using a carbocyanine dye. J Neurochem 1992; 58: 321-329.
Hashimoto S, Morohoshi K, Suzuki T, Matsushima K. Lipopolysaccharide-inducible gene expression profile in human monocytes. Scand J Infect Dis 2003; 35: 619-627.
Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 2004; 117: 5965-5973.
Hofbauer R, Frass M, Salfinger H, Moser D, Hornykewycz S, Gmeiner B, Kapiotis S. Propofol reduces the migration of human leukocytes through endothelial cell monolayers. Crit Care Med 1999; 27: 1843-1847.
Hofbauer R, Moser D, Hammerschmidt V, Kapiotis S, Frass M. Ketamine significantly reduces the migration of leukocytes through endothelial cell monolayers. Crit Care Med 1998; 26: 1545-1549.
Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR 4 as the Lps gene product. J Immunol 1999; 162: 3749-3752.
Hubbard AK, Giardina C. Regulation of ICAM-1 expression in mouse macrophages. Inflammation 2000; 24: 115-125.
Jacob CO. Studies on the role of tumor necrosis factor in murine and human autoimmunity. J Autoimmun 1992; 5: 133-143.
Jacobi J, Fraser GL, Coursin DB, Riker RR, Fontaine D, Wittbrodt ET, Chalfin DB, Masica MF, Bjerke HS, Coplin WM, Crippen DW, Fuchs BD, Kelleher RM, Marik PE, Nasraway SA Jr, Murray MJ, Peruzzi WT, Lumb PD. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med 2002: 30; 119-141.
Jensen AG, Dahlgren C, Eintrei C. Propofol decreases random and chemotactic stimulated locomotion of human neutrophils in vitro. Br J Anaesth 1993; 70: 99-100.
Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, Fenton MJ. Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 2001; 69: 1036-1044.
Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6: 827-837.
Kollef MH, Levy NT, Ahrens TS, Schaiff R, Prentice D, Sherman G. The use of continuous i.v. sedation is associated with prolongation of mechanical ventilation. Chest 1998; 114: 541-548.
Kotani N, Hashimoto H, Sessler DI, Kikuchi A, Suzuki A, Takahashi S, Muraoka M, Matsuki A. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology 1998; 89:1125–1132
Kotani N, Hashimoto H, Sessler DI, Yasuda T, Ebina T, Muraoka M, Matsuki A. Expression of genes for proinflammatory cytokines in alveolar macrophages during propofol and isoflurane anesthesia. Anesth Analg 1999; 89:1250–1256.
Lahti A, Jalonen U, Kankaanranta H, Moilanen E. c-Jun NH2-terminal kinase inhibitor anthra(1,9-cd)pyrazol-6(2H)-one reduces inducible nitric-oxide synthase expression by destabilizing mRNA in activated macrophages. Mol Pharmacol 2003; 64: 308-315.
Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS. ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 1997; 7: 433–444.
Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997; 11: 118–124.
Lechleitner S, Gille J, Johnson DR, Petzelbauer P. Interferon enhances tumor necrosis factor-induced vascular cell adhesion molecule 1 (CD106) expression in human endothelial cells by an interferon-related factor 1-dependent pathway. J Exp Med 1998; 187: 2023-2030.
Lee I, Bender E, Arnold S, Kadenbach B. New control of mitochondrial membrane potential and ROS formation-a hypothesis. Biol Chem 2001; 382: 1629-1636.
Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874.
Liew FY. Regulation of nitric oxide synthesis in infectious and autoimmune diseases. Immunol Lett 1994; 43: 95-98.
Lippmann M. Propofol: effect on the myocardium compared with the peripheral vascular system. Br J Anaesth 1991; 66: 416-417.
Lu H, Wu JY, Kudo T, Ohno T, Graham DY, Yamaoka Y. Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with Helicobacter pylori. Mol Biol Cell 2005; 16: 4954-4966.
Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 2003; 8: 115-128.
Mangano DT, Layug EL, Wallace A, Tateo I. Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Research Group. N Engl J Med 1996; 335: 1713-1720.
Manning AM, Davis RJ. Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2003; 2: 554-565.
Marian M, Parrino C, Leo AM, Vincenti E, Bindoli A, Scutari G. Effect of the intravenous anesthetic 2,6-diisopropylphenol on respiration and energy production by rat brain synaptosomes. Neurochem Res 1997; 22: 287-292.
Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546-1554.
Massion PP, Linden A, Inoue H, Mathy M, Grattan KM, Nadel JA. Dimethyl sulfoxide decreases interleukin-8-mediated neutrophil recruitment in the airways. Am Physiol 1996; 271: L838-843.
Mazar J, Rogachev B, Shaked G, Ziv NY, Czeiger D, Chaimovitz C, Zlotnik M, Mukmenev I, Byk G, Douvdevani A. Involvement of adenosine in the antiinflammatory action of ketamine. Anesthesiology 2005; 102: 1174-1181.
McBride WT, Armstrong MA, McBride SJ. Immunomodulation: an important concept in modern anaesthesia. Anaesthesia 1996; 51: 465-473.
Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-397.
Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg 2003; 97: 1331-1339.
Merin RG. Propofol causes cardiovascular depression. Anesthesiology 1990; 72: 393-394.
Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, Niwa Y. Propofol inhibits human neutrophil functions. Anesth Analg 1998; 87: 695-700.
Murphy PG, Ogilvy AJ, Whiteley SM. The effect of propofol on the neutrophil respiratory burst. Eur J Anaesthesiol 1996; 13: 471-473.
Nagy LE. Stabilization of tumor necrosis factor-?? mRNA in macrophages in response to chronic ethanol exposure. Alcohol 2004; 33: 229-233.
Nakamura M, Imaoka S, Amano F, Funae Y. P450 isoforms in a murine macrophage cell line, RAW264.7, and changes in the levels of P450 isoforms by treatment of cells with lipopolysaccharide and interferon-γ. Biochem Biophys Acta 1998; 1385: 101-106.
Nathan CF. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 1987; 80: 1550-1560.
Oshimi Y, Miyazaki S, Oda S. ATP-induced Ca2+ response mediated by P2U and P2Y purinoceptors in human macrophages: signalling from dying cells to macrophages. Immunology 1999; 98: 220-227.
Osuchowski MF, Welch K, Yang H, Siddiqui J, Remick DG. Chronic sepsis mortality characterized by an individualized inflammatory response. J Immunol 2007; 179: 623-630.
Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 2003; 37: 1043-1055.
Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G. The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 2006; 13: 712-729.
Patel RT, Deen KI, Youngs D, Warwick J, Keighley MR. Interleukin 6 is a prognostic indicator of outcome in severe intra-abdominal sepsis. Br J Surg 1994; 81: 1306-1308.
Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993; 103: 565-575.
Pirttikangas CO, Perttilä J, Salo M. Propofol emulsion reduces proliferative responses of lymphocytes from intensive care patients. Intensive Care Med 1993; 19: 299-302.
Poldermans D, Bax JJ, Kertai MD, Krenning B, Westerhout CM, Schinkel AF, Thomson IR, Lansberg PJ, Fleisher LA, Klein J, van Urk H, Roelandt JR, Boersma E. Statins are associated with a reduced incidence of perioperative mortality in patients undergoing major noncardiac vascular surgery. Circulation 2003; 107: 1848-1851.
Potapova O, Basu S, Mercola D, Holbrook NJ. Protective role for c-Jun in the cellular response to DNA damage. J Biol Chem 2001; 276: 28546-28553.
Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 1991; 5: 2652-2660.
Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 1989; 36: 186-197.
Rofael HZ, Turkall RM, Abdel-Rahman MS. Effect of ketamine on cocaine-induced immunotoxicity in rats. Int J Toxicol 2003; 22: 343-358.
Ronan KP, Gallagher TJ, George B, Hamby B. Comparison of propofol and midazolam for sedation in intensive care unit patients. Crit Care Med 1995; 23: 286-293.
Rothman SM, Thurston JH, Hauhart RE, Clark GD, Solomon JS. Ketamine protects hippocampal neurons from anoxia in vitro. Neuroscience 1987; 21, 673-678.
Sachs L, Lotem J, Shabo Y. The molecular regulators of macrophage and granulocyte development. Role of MGI-2/IL-6. Ann NY Acad Sci 1989; 557: 417-435.
Salo M, Pirttikangas CO, Pulkki K. Effects of propofol emulsion and thiopentone on T helper cell type-1/type-2 balance in vitro. Anaesthesia 1997; 52: 341-344.
Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med 2000; 28: 172-177.
Scott DL, Kingsley GH. Tumor necrosis factor inhibitors for rheumatoid arthritis. N Engl J Med 2006; 355: 704-712.
Sebel PS, Lowdon JD. Propofol: a new intravenous anesthetic. Anesthesiology 1989; 71: 260-277.
Sidell N, Han SW, Parthasarathy S. Regulation and modulation of abnormal immune responses in endometriosis. Ann NY Acad Sci 2002; 955: 159-173.
Simizu S, Imoto M, Masuda N, Takada M, Umezawa K. Involvement of hydrogen peroxide production in erbstain-induced apoptosis in human small cell lung carcinoma cells. Cancer Res 1997; 56: 4978-4982.
Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K, Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C-propofol. Xenobiotica 1988; 18: 429-440.
Suliburk JW, Mercer DW. Ketamine attenuates early lipopolysaccharide-induced gastric dysfunction: role of stress-inducible phosphoproteins. J Trauma 2007; 62: 316-319.
Sun J, Wang XD, Liu H, Xu JG. Ketamine suppresses endotoxin-induced NF-kappaB activation and cytokines production in the intestine. Acta Anaesthesiol Scand 2004; 48: 317-321.
Sztark F, Ichas F, Ouhabi R, Dabadie P, Mazat JP. Effects of the anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: direct pore inhibition and shift of the gating potential. FEBS Lett 1995; 368: 101-104.
Tai YT, Cherng YG, Chang CC, Hwang YP, Chen JT, Chen RM. Pretreatment with low nitric oxide protects osteoblasts from high nitric oxide-induced apoptotic insults through regulation of c-Jun N-terminal kinase/c-Jun-mediated Bcl-2 gene expression and protein translocation. J Orthop Res 2007; 25: 625-635.
Taniguchi T, Shibata K, Yamamoto K. Ketamine inhibits endotoxin-induced shock in rats. Anesthesiology 2001; 95: 928-932.
Taniguchi T, Kanakura H, Yamamoto K. Effects of posttreatment with propofol on mortality and cytokine responses to endotoxin-induced shock in rats. Crit Care Med 2002; 30: 904-907.
Taniguchi T, Takemoto Y, Kanakura H, Kidani Y, Yamamoto K. The dose-related effects of ketamine on mortality and cytokine responses to endotoxin - induced shock in rats. Anesth Analg 2003; 97: 1769-72.
Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007; 7: 179-190.
Weigand MA, Schmidt H, Zhao Q, Plaschke K, Martin E, Bardenheuer HJ. Ketamine modulates the stimulated adhesion molecule expression on human neutrophils in vitro. Anesth Analg 2000; 90: 206-212.
Weinshank RL, Luster AD, Ravetch JV. Function and regulation of a murine macrophage-specific IgG Fc receptor, Fc gamma R-alpha. J Exp Med 1988; 167: 1909-1925.
White PF, Way WL, Trevor AJ. Ketamine: its pharmacology and therapeutic uses. Anesthesiology 1982; 56: 119-136.
Wilder RL, Elenkov IJ. Hormonal regulation of tumor necrosis factor-alpha, interleukin-12 and interleukin-10 production by activated macrophages. A disease-modifying mechanism in rheumatoid arthritis and systemic lupus erythematosus? Ann NY Acad Sci 1999; 876: 14-31.
Wu CH, Chen TL, Chen TG, Ho WP, Chiu WT, Chen RM. Nitric oxide modulates pro- and anti-inflammatory cytokines in lipopolysaccharide-activated macrophages. J Trauma 2003; 55: 540-545.
Wu GJ, Chen TG, Chang HC, Chiu WT, Chang CC, Chen RM. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes. J Cell Biochem 2007; 101: 1520-1531.
Xiao H, Siddiqui J, Remick DG. Mechanisms of mortality in early and late sepsis. Infect Immun 2006; 74: 5227-5235.
Yang J, Li W, Duan M, Zhou Z, Lin N, Wang Z, Sun J, Xu J. Large dose ketamine inhibits lipopolysaccharide-induced acute lung injury in rats. Inflamm Res 2005; 54: 133-137.
Zhang QG, Xu YL, Li HC, Han D, Zhang GY. NMDA receptor/L-VGCC-dependent expression and AMPA/KA receptor-dependent activation of c-Jun induced by cerebral ischemia in rat hippocampus. Neurosci Lett 2006; 398: 268-273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊