(44.192.70.216) 您好!臺灣時間:2021/05/09 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宗樺
研究生(外文):Tsung-Hua Tsai
論文名稱:多光子顯微鏡系統在皮膚的診斷治療之應用
論文名稱(外文):Multiphoton Microscopy in the Application of Skin Diagnosis and Treatment
指導教授:李婉若
指導教授(外文):Woan-Ruoh Lee
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:58
中文關鍵詞:多光子自發螢光二倍頻雷射電磁波紫外光皮膚活體實驗雷射輔助藥物經皮穿透
外文關鍵詞:multiphotonautofluorescencesecond harmonic generationlaserradiofrequencyultravioletskinin vivolaser-assisted drug deliver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雷射光療廣泛應用於治療許多種組織包括皮膚的疾病。鉺雅鉻雷射是一種常用的雷射來治療皮膚腫瘤和磨皮;紫外光已知是造成皮膚鬆弛老化的一個重要因子;而電磁波拉皮機器靠著加熱真皮,已被用來做非侵入性的皮膚緊緻治療,治療鬆弛的老化現象。為了找到適合不同個體差異的治療能量,需要評估組織的即時反應和變化。多光子顯微鏡是一種非侵入性的系統,可提供細胞層次的高解析度,近年來被應用於觀測活體生物的研究。此研究目的主要在活體上利用多光子及二倍頻顯微術,做為評估雷射和電磁波對組織作用的系統。鼠皮在使用不同能量的鉺雅鉻雷射、紫外光及電磁波作用後,使用多光子顯微鏡,針對皮膚的自發螢光和二倍頻等非線性光學訊號做型態以及定量分析。二倍頻的量已經被證實和膠原蛋白的量有正相關。鉺雅鉻雷射在低能量下可以把角質層震鬆,而沒有傷害到底下的組織,這個效應可用來進一步研究造成雷射輔助藥物經皮穿透的機轉。鉺雅鉻雷射在高能量下所造成的傷灼現象,以及底下表皮、真皮結締組織的破壞可以清楚得由多光子顯微鏡看到。我們能夠更進一步定量分析二倍頻減少的程度,來評估雷射後剩餘熱傷害的程度。我們利用多光子顯微鏡研究經過紫外光照射後的光老化現象,在紫外光照射的組別其膠原蛋白的二倍頻訊號比起對照組有顯著的降低,而光老化形成的彈性纖維也可在多光子顯微鏡下以自發螢光表現。同時,我們評估電磁波拉皮治療皮膚老化的效果,二倍頻減少的程度和電磁波的強度成正比,表示膠原蛋白因為電磁波加熱的關係而分解。但是在電磁波後的一個月,其二倍頻的強度反而增加到比治療前還要強,表示膠原蛋白在破壞後經過一段時間有增生,這是解釋電磁波能緊緻皮膚的可能機轉。多光子顯微鏡能夠得到細胞層次高解析度的影象,觀察皮膚角質層、表皮層、真皮細胞外間質的變化。由於其非侵入性,可以觀察電波及光線治療後依序的皮膚變化。多光子顯微鏡是一個能應用在活體上評估雷射、紫外光、電磁波對於皮膚組織作用的一個良好工具。此研究將可以使我們更清楚非線性造影術在瞭解電波及光線與組織交互作用的詳細過程的價值,以及進一步應用於臨床研究。
Laser and light is frequently used in treating various diseases, including skin disorders. Erbium:YAG laser is a commonly used laser to treat skin tumors and dermabrasion. Ultraviolet (UV) light is known as a major factor in skin aging and laxity. Radiofrequency have been introduced for nonablative tissue tightening by volumetric heating of the deep dermis to treat redundant skin laxity, which is a major feature of aging. Real-time evaluating tissue reaction is necessary in order to adjust the laser or radiofrequency energy to suit individual. Recently, multiphoton microscopy is an emerging non-invasive technology, which can provide cellular level high resolution images in vivo. The aim of this study was to validate the usefulness of MPM as an imaging modality for monitoring tissue reaction after light, laser and radiofrequency in vivo. Nude mouse skin was irradiated with an Erbium:YAG laser and radiofrequency device at various fluence and the skin was imaged using a MPM. The alterations of cutaneous non-linear optical properties including multiphoton autoflurescence and second harmonic generation (SHG) associated with laser and radiofrequency treatment was evaluated morphologically and quantitatively. SHG intensity has been shown to correlate with the amount of collagen. Out study showed that, at low fluence, Erbium:YAG laser selectively loosened the compact stratum corneum without detectable damage to the viable skin. This effect may contribute to laser-assisted transcutaneous drug delievery. At high fluence, the residual epidermal and dermal structures could be visualized after ablation. Furthermore, the degree of collagen damage in the residual thermal zone was evaluated by quantitative analysis of second harmonic generation signals. UV light induced photodamaged skin was studied with multiphoton microscopy. There was significant decrease of collagen SHG signals in UV-irradiated group compared to control. Solar elastosis was found to emit autofluorescence in MPM. Also, we studied antiaging effects of radiofrequency by MPM. The dermal collagen SHG signals decreased in accordance to energy of irradiation, which means collagen disruption after heating effects of radiofrequency. The SHG signals increased over baseline one month after radiofrequency. The effects displayed collagen regeneration after heat-induced disruption, which could be the mechanism of skin tightening with radiofrequency. Multiphoton imaging with cellular resolution clearly visualized the reaction of the stratum corneum, keratinocytes and dermal extracellular matrix caused by laser, radiofrequency and ultraviolet irradiation. Due to its non-invasiveness, we can obtain serial change of skin. In conclusion, MPM is an ideal tool for monitoring tissue reaction to laser, UV light and radiofrequency in vivo. The study support the usefulness of non-linear optics in studying mechanism of tissue remodeling after laser or radiofrequency treatment, which can be applied in further clinical research.
Contents
Acknowledgment -- 1
Chinese abstract -2
English abstract ---4
Contents -- 6
1. Introduction -- 7
1. Lasers in surgery and medicine 7
2. Erbium:YAG laser 8
3. Non-invasive skin tightening 8
4. Multiphoton microscopy 9
5. Motivation of the study 12
2. Materials and Methods 14
3. Results ------- 20
Part 1 MPM and histological examinations after Erbium:YAG laser at various fluence 20
Part 2 Decreased collagen and increased elastic fibers after UV radiation revealed by MPM 32
Part 3 Skin structure alterations immediately after monopolar radiofrequency treatment at different passes 38
Part 4 Collagen remodeling after radiofrequency 44
4. Discussion-----------49
5. Reference----54
References

1.Anderson RR. Lasers in dermatology--a critical update. J Dermatol 2000;27:700-5.
2.Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983;220:524-7.
3.Alster TS. Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing. Lasers Surg Med 1999;24:87-92.
4.Ross EV, McKinlay JR, Sajben FP, et al. Use of a novel erbium laser in a Yucatan minipig: a study of residual thermal damage, ablation, and wound healing as a function of pulse duration. Lasers Surg Med 2002;30:93-100.
5.Tanzi EL, Alster TS. Side effects and complications of variable-pulsed erbium:yttrium-aluminum-garnet laser skin resurfacing: extended experience with 50 patients. Plast Reconstr Surg 2003;111:1524-9; discussion 30-2.
6.Jordan R, Cummins C, Burls A. Laser resurfacing of the skin for the improvement of facial acne scarring: a systematic review of the evidence. Br J Dermatol 2000;142:413-23.
7.Ostertag JU, Quaedvlieg PJF, Kerckhoffs FEMJ, et al. Congenital naevi treated with erbium:YAG laser (Derma K) resurfacing in neonates: Clinical results and review of the literature. Br J Dermatol 2006;154:889-95.
8.Lee W-R, Shen S-C, Wang K-H, et al. The effect of laser treatment on skin to enhance and control transdermal delivery of 5-fluorouracil. J Pharm Sci 2002;91:1613-26.
9.Lee W-R, Shen S-C, Kuo-Hsien W, et al. Lasers and microdermabrasion enhance and control topical delivery of vitamin C. J Invest Dermatol 2003;121:1118-25.
10.Fang JY, Lee WR, Shen SC, et al. Enhancement of topical 5-aminolaevulinic acid delivery by erbium:YAG laser and microdermabrasion: a comparison with iontophoresis and electroporation. Br J Dermatol 2004;151:132-40.
11.Fang J-Y, Lee W-R, Shen S-C, et al. Transdermal delivery of macromolecules by erbium:YAG laser. J Controlled Release 2004;100:75-85.
12.Lee W-R, Shen S-C, Liu C-R, et al. Erbium:YAG laser-mediated oligonucleotide and DNA delivery via the skin: an animal study. J Controlled Release 2006;115:344-53.
13.Lee W-R, Tsai R-Y, Fang C-L, et al. Microdermabrasion as a novel tool to enhance drug delivery via the skin: an animal study. Dermatol Surg 2006;32:1013-22.
14.Shen S-C, Lee W-R, Fang Y-P, et al. In vitro percutaneous absorption and in vivo protoporphyrin IX accumulation in skin and tumors after topical 5-aminolevulinic acid application with enhancement using an erbium:YAG laser. J Pharm Sci 2006;95:929-38.
15.Marrot L, Meunier J-R. Skin DNA photodamage and its biological consequences. J Am Acad Dermatol 2008;58:S139-48.
16.Rigel DS. Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J Am Acad Dermatol 2008;58:S129-32.
17.Seite S, Fourtanier AMA. The benefit of daily photoprotection. J Am Acad Dermatol 2008;58:S160-6.
18.Stern RS. Clinical practice. Treatment of photoaging.[see comment]. N Engl J Med 2004;350:1526-34.
19.Lin S-J, Wu R-, Jr., Tan H-Y, et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett 2005;30:2275-7.
20.Yu CS, Yeung CK, Shek SY, et al. Combined infrared light and bipolar radiofrequency for skin tightening in asians. Lasers Surg Med 2007;39:471-5.
21.Hammes S, Greve B, Raulin C. Electro-optical synergy (ELOS) technology for nonablative skin rejuvenation: a preliminary prospective study. J Eur Acad Dermatol Venereol 2006;20:1070-5.
22.Taylor MB, Prokopenko I. Split-face comparison of radiofrequency versus long-pulse Nd-YAG treatment of facial laxity. J Cosmet Laser Ther 2006;8:17-22.
23.Weiss RA, Weiss MA, Munavalli G, et al. Monopolar radiofrequency facial tightening: a retrospective analysis of efficacy and safety in over 600 treatments. J Drugs Dermatol 2006;5:707-12.
24.Biesman BS, Pope K. Monopolar radiofrequency treatment of the eyelids: a safety evaluation. Dermatol Surg 2007;33:794-801.
25.Key DJ. Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd: YAG laser compared. Lasers Surg Med 2007;39:169-75.
26.Dierickx CC. The role of deep heating for noninvasive skin rejuvenation. Lasers Surg Med 2006;38:799-807.
27.Rajadhyaksha M, Grossman M, Esterowitz D, et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol 1995;104:946-52.
28.Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990;248:73-6.
29.So PT, Dong CY, Masters BR, et al. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2000;2:399-429.
30.Masters BR, So PT, Gratton E. Multiphoton excitation microscopy of in vivo human skin. Functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopy. Ann N Y Acad Sci 1998;838:58-67.
31.Masters BR, So PT, Gratton E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 1997;72:2405-12.
32.Malone JC, Hood AF, Conley T, et al. Three-dimensional imaging of human skin and mucosa by two-photon laser scanning microscopy. J Cutan Pathol 2002;29:453-8.
33.Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 2003;21:1356-60.
34.Lin M-G, Yang T-L, Chiang C-T, et al. Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy. J Biomed Opt 2006;11:064006.
35.Lin S-J, Hsiao C-Y, Sun Y, et al. Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy. Opt Lett 2005;30:622-4.
36.Zipfel WR, Williams RM, Christie R, et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 2003;100:7075-80.
37.Lin S-J, Jee S-H, Kuo C-J, et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett 2006;31:2756-8.
38.Yeh AT, Kao B, Jung WG, et al. Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model. J Biomed Opt 2004;9:248-53.
39.Masters BR, So PTC, Buehler C, et al. Mitigating thermal mechanical damage potential during two-photon dermal imaging. J Biomed Opt 2004;9:1265-70.
40.de Felipe I, Redondo P. Animal model to explain fat atrophy using nonablative radiofrequency. Dermatol Surg 2007;33:141-5.
41.Lee WR, Shen SC, Lai HH, et al. Transdermal drug delivery enhanced and controlled by erbium:YAG laser: a comparative study of lipophilic and hydrophilic drugs. J Controlled Release 2001;75:155-66.
42.Yu B, Kim KH, So PTC, et al. Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. J Invest Dermatol 2003;120:448-55.
43.Sun Y, Lo W, Lin S-J, et al. Multiphoton polarization and generalized polarization microscopy reveal oleic-acid-induced structural changes in intercellular lipid layers of the skin. Opt Lett 2004;29:2013-5.
44.Stracke F, Weiss B, Lehr C-M, et al. Multiphoton microscopy for the investigation of dermal penetration of nanoparticle-borne drugs. J Invest Dermatol 2006;126:2224-33.
45.Kuo T, Speyer MT, Ries WR, et al. Collagen thermal damage and collagen synthesis after cutaneous laser resurfacing. Lasers Surg Med 1998;23:66-71.
46.Yeh AT, Choi B, Nelson JS, et al. Reversible dissociation of collagen in tissues. J Invest Dermatol 2003;121:1332-5.
47.van Gemert MJ, Smithies DJ, Verkruysse W, et al. Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy. Phys Med Biol 1997;42:41-50.
48.Liew SH, Grobbelaar A, Gault D, et al. Hair removal using the ruby laser: clinical efficacy in Fitzpatrick skin types I-V and histological changes in epidermal melanocytes. Br J Dermatol 1999;140:1105-9.
49.Choi B, Jia W, Channual J, et al. The Importance of Long-Term Monitoring to Evaluate the Microvascular Response to Light-Based Therapies. J Invest Dermatol 2007.
50.Koehler MJ, Konig K, Elsner P, et al. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt Lett 2006;31:2879-81.
51.Konig K, Ehlers A, Stracke F, et al. In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacology & Physiology 2006;19:78-88.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔