(3.236.118.225) 您好!臺灣時間:2021/05/16 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王超賢
研究生(外文):Chao-Sian Wang
論文名稱:Hesperidin及hesperidin-3’-O-methylether抗氣喘的作用
論文名稱(外文):Anti-asthmatic action of hesperidin and hesperidin-3’-O-methylether
指導教授:林建煌林建煌引用關係柯文昌柯文昌引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:61
中文關鍵詞:氣喘
外文關鍵詞:hesperidinantiasthmatic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
橙皮苷 (hesperidin) 是flavanone glycoside,目前已有文獻指出hesperidin具有抗發炎及止痛的效果,我們曾報告過橙皮素(hesperetin)有抗氣喘效果,而hesperidin結構上比橙皮素hesperetin多一個醣基,富含於柑橘類果皮中,為甜橘及檸檬中主要的flavonoid,其抗氣喘效果值得探討。另外,甲基橙皮苷 (hesperidin-3’-O-methylether) 是橙皮苷甲基化而得,目前僅知有冠狀動脈擴張及舒張多種平滑肌作用,但是否有抗氣喘作用尚不得而知,
將雌性小白鼠 (BALB/c) 腹腔內注射卵蛋白 (ovalbumin, OVA),使其敏感化,再將卵蛋白以氣化噴霧的方式給予小白鼠,作為卵蛋白第一次激釁 (primary challenge),而後利用整體體積描述器來分析因methacholine (MCh) 所引起的氣道過度反應 (airway hyperresponsiveness; AHR)。結果顯示,hesperidin (100 μmol/kg, p.o.)及hesperidin-3’-O-methylether (30~100 μmol/kg, p.o.)可減低由MCh所增加的enhanced pause (Penh) 值,以及減少肺泡灌洗液 (BALF) 的總發炎細胞、嗜酸性白血球、嗜中性白血球和淋巴球的產生,也會有意義地降低肺泡灌洗液interleukin (IL)-2, IL-4, IL-5和tumor necrosis factor (TNF)-?悛瘧孺鞢A而interferon (IFN)-?? 的釋放,會降低血清及肺泡灌洗液的total 和OVA-specific IgE的量,但增加血清的IgG2a含量,顯示能加强抗發炎的作用。Hesperidin取代結合在敏感化天竺鼠全腦細胞顆粒high affinity rolipram binding sites (HARBS)之 [3H]-rolipram的EC50值 > 300 μM,hesperidin-3’-O-methylether則為218.3 ± 32.1 μM,因此計算其治療係數(PDE4H/PDE4L)為15.7,並且發現兩者皆無法縮短由xylazine/ketamine所引起的麻醉時間,所以推測如噁心、嘔吐及胃酸分泌過多的副作用很低。
Hesperidin (100 ?嵱) 和hesperidin-3’-O-methylether (100 ?嵱) 兩者均無法抑制累加OVA (10~100 μg/ml) 引起的敏感化離體天竺鼠氣管的收縮,雖然都會有意義地鬆弛其基本張力,顯示無法抑制肥胖細胞的去顆粒化。
結論,hesperidin及hesperidin-3’-O-methylether具抗發炎及抗氣喘的功效,而hesperidin-3’-O-methylether的作用似乎更勝於hesperidin。
Hesperidin is a flavanone glycoside. Hesperidin has been reported to possess significant anti-inflammatory and analgesic effects. Our previous study has indicated hesperetin possess antiasthmatic effect. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. Hesperidin-3’-O-methylether is a methylation product of hesperidin. We just know hesperidin-3’-O-methylether possess the vasodilation of coronary artery and the relaxation of some smooth muscle now, but these is little study about antiasthmatic effect.
In the sensitized and OVA-primary challenged BALB/c mice, an asthmatic animal model, the airway hyperresponsiveness (AHR) was measured in unrestrained animals by barometric plethysmography using a whole-body plethysmograph after exposure of methacholine (MCh, 6.25~50 mg/ml) and enhanced pause (Penh) values were determined. First, hesperidin (100 μmol/kg, p.o.) and hesperidin-3’-O-methylether (30~100 μmol/kg, p.o.) significantly suppressed the enhancement of MCh -induced Penh values and significantly suppressed the increase of total inflammatory cells, eosinophils, neutrophils, and lymphocytes, and also significantly attenuated the release of interleukin (IL)-2, IL-4, IL-5 and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) of the mice, but the release of interferon (IFN)-γ is increased. They also significantly reduced total and OVA-specific IgE levels in the serum and in the BALF. In the opposite, it significantly increased IgG2a levels in the serum suggesting that the anti-inflammation was potentiated.
Hesperidin displaced [3H]-rolipram from high affinity rolipram binding sites (HARBS) of particulates of whole brains isolated from sensitized guinea pigs, with an EC50 value beyond 300 ?嵱, and the EC50 value of hesperidin-3’-O-methylether is 218.3 ± 32.1 μM. Therefore, its therapeutic ratio (PDE4H/PDE4L) was calculated to be 15.7. Hesperidin and hesperidin-3’-O-methylether did not shorten the duration of anathesia induced by xylazine/ketamine, suggesting that its adverse effect, such as nausea, vomiting and gastric hypersecretion, may be little.
Hesperidin (100 ?嵱) and hesperidin-3’-O-methylether (100 ?嵱) significantly relaxed the baseline tension, but did not suppress cumulative OVA (10~100 ?慊/ml)-induced contractions in isolated sensitized guinea pig trachealis, suggesting that they can not prevent the degranulation of mast cells.
In conclusion, both of hesperidin and hesperidin-3’-O-methylether possessed anti-inflammatory and anti-asthmatic effects. Hesperidin-3’ -O-methylether had better anti-inflammatory effects than hesperidin.
標題…………………………………………………………. 1
圖表目錄……………………………………………………..5
縮寫表……………………………………………………......6
中文摘要……………………………………………………..8
英文摘要…………………………………………………….10
壹、緒論…………………………………………………….13
貳、實驗材料與方法……………………………………….18
參、結果…………………………………………………….33
肆、討論…………………………………………………….41
伍、參考文獻……………………………………………….47
圖…………………………………………………………….53
圖解………………………………………………………….60
表………………………………………………………….…61
1. Sugita M, Kuribayashi K, Nakagomi T, Miyata S, Matsuyama T, and Kitada O, Allergic bronchial asthma: airway inflammation and hyperresponsiveness. Intern. Med. 42: 636-643, 2003.
2. Welte T and Groneberg DA, Asthma and COPD. Exp. Toxicol. Pathol. 57 Suppl 2: 35-40, 2006.
3. Barnes PJ, Endogenous inhibitory mechanisms in asthma. Am. J. Respir. Crit. Care Med. 161: S176-S181, 2000.
4. Herberth G, Daegelmann C, Weber A, Roder S, Giese T, Kramer U, Schins RP, Behrendt H, Borte M, and Lehmann I, Association of neuropeptides with Th1/Th2 balance and allergic sensitization in children. Clin. Exp. Allergy 36: 1408-1416, 2006.
5. Bacharier LB, Jabara H, and Geha RS, Molecular mechanisms of immunoglobulin E regulation. Int. Arch. Allergy Immunol. 115: 257-269, 1998.
6. Turner H and Kinet JP, Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 402: B24-B30, 1999.
7. Garlisi CG, Falcone A, Hey JA, Paster TM, Fernandez X, Rizzo CA, Minnicozzi M, Jones H, Billah MM, Egan RW, and Umland SP, Airway eosinophils, T cells, Th2-type cytokine mRNA, and hyperreactivity in response to aerosol challenge of allergic mice with previously established pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 17: 642-651, 1997.
8. Frew AJ, Moqbel R, Azzawi M, Hartnell A, Barkans J, Jeffery PK, Kay AB, Scheper RJ, Varley J, Church MK, and Holgate ST, T lymphocytes and eosinophils in allergen-induced late-phase asthmatic reactions in the guinea pig. Am. Rev. Respir. Dis. 141: 407-413, 1990.
9. Robinson DS, Durham SR, and Kay AB, Cytokines. 3. Cytokines in asthma. Thorax 48: 845-853, 1993.
10. Sanderson CJ, Interleukin-5, eosinophils, and disease. Blood 79: 3101-3109, 1992.
11. Eapen SS and Busse WW, Asthma. Clin. Allergy Immunol. 16: 325-353, 2002.
12. Kuna P, Longterm effects of steroid therapy. Wiad. Lek. 51 Suppl 1: 12-18, 1998.
13. Su CW, Wu JC, Huang YH, Huang YS, Chang FY, and Lee SD, Zafirlukast-induced acute hepatitis. Zhonghua Yi. Xue. Za Zhi. (Taipei) 65: 553-556, 2002.
14. Beavo JA, Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75: 725-748, 1995.
15. Francis SH, Turko IV, and Corbin JD, Cyclic nucleotide phosphodiesterases: relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. 65: 1-52, 2001.
16. Lin CS, Lau A, Tu R, and Lue TF, Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. Biochem. Biophys. Res. Commun. 268: 628-635, 2000.
17. Nicholson CD and Shahid M, Inhibitors of cyclic nucleotide phosphodiesterase isoenzymes-their potential utility in the therapy of asthma. Pulm. Pharmacol. 7: 1-17, 1994.
18. Nicholson CD, Challiss RA, and Shahid M, Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol. Sci. 12: 19-27, 1991.
19. Giembycz MA, Development status of second generation PDE4 inhibitors for asthma and COPD: the story so far. Monaldi Arch. Chest Dis. 57: 48-64, 2002.
20. Ko WC, Shih CM, Lai YH, Chen JH, and Huang HL, Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Biochem. Pharmacol. 68: 2087-2094, 2004.
21. Han CY. Anti-asthmaic action of hesperetin-7,3''-O-dimethylether. Master thesis, Graduate Institute of Pharmacology, Taipei Medical University. 2007.
22. Garg A, Garg S, Zaneveld LJ, and Singla AK, Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother. Res. 15: 655-669, 2001.
23. Galati EM, Monforte MT, Kirjavainen S, Forestieri AM, Trovato A, and Tripodo MM, Biological effects of hesperidin, a citrus flavonoid. (Note I): antiinflammatory and analgesic activity. Farmaco. 40: 709-712, 1994.
24. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, and Aromaa A, Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76: 560-568, 2002.
25. Feng MG, Feng GH, and Zhou QG, Effects of methylhesperidin on coronary, renal and cerebral circulation in dogs. Zhongguo Yao Li Xue Bao 9: 548-550, 1988.
26. Thompson WJ and Appleman MM, Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 10: 311-316, 1971.
27. Ahn HS, Crim W, Romano M, Sybertz E, and Pitts B, Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. Biochem. Pharmacol. 38: 3331-3339, 1989.
28. Podzuweit T, Nennstiel P, and Muller A, Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy -3-nonyl) adenine. Cell Signal. 7: 733-738, 1995.
29. Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, and Beavo JA, Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol. Pharmacol. 29: 506-514, 1986.
30. Reeves ML, Leigh BK, and England PJ, The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem. J. 241: 535-541, 1987.
31. Gillespie PG and Beavo JA, Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948. Mol. Pharmacol. 36: 773-781, 1989.
32. Barnette MS, Bartus JO, Burman M, Christensen SB, Cieslinski LB, Esser KM, Prabhakar US, Rush JA, and Torphy TJ, Association of the anti-inflammatory activity of phosphodiesterase 4 (PDE4) inhibitors with either inhibition of PDE4 catalytic activity or competition for [3H]-rolipram binding. Biochem. Pharmacol. 51: 949-956, 1996.
33. Schneider HH, Schmiechen R, Brezinski M, and Seidler J, Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur. J. Pharmacol. 127: 105-115, 1986.
34. Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, and Gelfand EW, Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit Care Med. 156: 766-775, 1997.
35. Cho YS, Kwon B, Lee TH, Kim TB, Moon KA, La S, Lee J, Lee SD, Oh YM, and Moon HB, 4-1 BB stimulation inhibits allergen-specific immunoglobulin E production and airway hyper-reactivity but partially suppresses bronchial eosinophilic inflammation in a mouse asthma model. Clin. Exp. Allergy 36: 377-385, 2006.
36. Robichaud A, Stamatiou PB, Jin SL, Lachance N, MacDonald D, Laliberte F, Liu S, Huang Z, Conti M, and Chan CC, Deletion of phosphodiesterase 4D in mice shortens ??2-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J. Clin. Invest. 110: 1045-1052, 2002.
37. Azzawi M, Bradley B, Jeffery PK, Frew AJ, Wardlaw AJ, Knowles G, Assoufi B, Collins JV, Durham S, and Kay AB, Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am. Rev. Respir. Dis. 142: 1407-1413, 1990.
38. Bourne HR, Lichtenstein LM, Melmon KL, Henney CS, Weinstein Y, and Shearer GM, Modulation of inflammation and immunity by cyclic AMP. Science 184: 19-28, 1974.
39. Kuehl FA, Jr., Zanetti ME, Soderman DD, Miller DK, and Ham EA, Cyclic AMP-dependent regulation of lipid mediators in white cells. A unifying concept for explaining the efficacy of theophylline in asthma. Am. Rev. Respir. Dis. 136: 210-213, 1987.
40. Moore AR and Willoughby DA, The role of cAMP regulation in controlling inflammation. Clin. Exp. Immunol. 101: 387-389, 1995.
41. Kammer GM, The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol. Today 9: 222-229, 1988.
42. Robicsek SA, Blanchard DK, Djeu JY, Krzanowski JJ, Szentivanyi A, and Polson JB, Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes. Biochem. Pharmacol. 42: 869-877, 1991.
43. Spina D, The potential of PDE4 inhibitors in respiratory disease. Curr. Drug Targets. Inflamm. Allergy 3: 231-236, 2004.
44. Giembycz MA, Corrigan CJ, Seybold J, Newton R, and Barnes PJ, Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br. J. Pharmacol. 118: 1945-1958, 1996.
45. Cos P, Calomme M, Sindambiwe JB, De BT, Cimanga K, Pieters L, Vlietinck AJ, and Vanden BD, Cytotoxicity and lipid peroxidation-inhibiting activity of flavonoids. Planta Med. 67: 515-519, 2001.
46. Namgoong SY, Son KH, Chang HW, Kang SS, and Kim HP, Effects of naturally occurring flavonoids on mitogen-induced lymphocyte proliferation and mixed lymphocyte culture. Life Sci. 54: 313-320, 1994.
47. Kim HK, Cheon BS, Kim YH, Kim SY, and Kim HP, Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58: 759-765, 1999.
48. Bokkenheuser VD, Shackleton CH, and Winter J, Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J. 248: 953-956, 1987.
49. Underwood DC, Osborn RR, Novak LB, Matthews JK, Newsholme SJ, Undem BJ, Hand JM, and Torphy TJ, Inhibition of antigen-induced bronchoconstriction and eosinophil infiltration in the guinea pig by the cyclic AMP-specific phosphodiesterase inhibitor, rolipram. J. Pharmacol. Exp. Ther. 266: 306-313, 1993.
50. Grzela K, Lazarczyk M, Dziunycz P, Milewski L, Niderla J, and Grzela T, Molecular therapy versus standard treatment in allergy (Review). Int. J. Mol. Med. 14: 3-22, 2004.
51. Zhang K, Accessibility control and machinery of immunoglobulin class switch recombination. J. Leukoc. Biol. 73: 323-332, 2003.
52. Giembycz MA, Phosphodiesterase 4 inhibitors and the treatment of asthma: where are we now and where do we go from here? Drugs 59: 193-212, 2000.
53. Kaulen P, Bruning G, Schneider HH, Sarter M, and Baumgarten HG, Autoradiographic mapping of a selective cyclic adenosine monophosphate phosphodiesterase in rat brain with the antidepressant [3H]-rolipram. Brain Res. 503: 229-245, 1989.
54. Zhao Y, Zhang HT, and O''Donnell JM, Inhibitor binding to type 4 phosphodiesterase (PDE4) assessed using [3H]-piclamilast and [3H]-rolipram. J. Pharmacol. Exp. Ther. 305: 565-572, 2003.
55. Souness JE and Rao S, Proposal for pharmacologically distinct conformers of PDE4 cyclic AMP phosphodiesterases. Cell Signal. 9: 227-236, 1997.
56. Kim E, Chun HO, Jung SH, Kim JH, Lee JM, Suh BC, Xiang MX, and Rhee CK, Improvement of therapeutic index of phosphodiesterase type IV inhibitors as anti-asthmatics. Bioorg. Med. Chem. Lett. 13: 2355-2358, 2003.
57. Hatzelmann A and Schudt C, Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J. Pharmacol. Exp. Ther. 297: 267-279, 2001.
58. Draheim R, Egerland U, and Rundfeldt C, Anti-inflammatory potential of the selective phosphodiesterase 4 inhibitor N-(3,5-dichloro-pyrid-4-yl)-[1- (4-fluorobenzyl)-5-hydroxy-indole-3-yl]-gly oxylic acid amide (AWD 12-281), in human cell preparations. J. Pharmacol. Exp. Ther. 308: 555-563, 2004.
59. Robichaud A, Savoie C, Stamatiou PB, Tattersall FD, and Chan CC, PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology 40: 262-269, 2001.
60. Correa-Sales C, Nacif-Coelho C, Reid K, and Maze M, Inhibition of adenylate cyclase in the locus coeruleus mediates the hypnotic response to an ??2 agonist in the rat. J. Pharmacol. Exp. Ther. 263: 1046-1049, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top