(3.236.222.124) 您好!臺灣時間:2021/05/11 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周明莉
研究生(外文):Ming-Li Chou
論文名稱:白色念珠菌在Fluconazole和Terbinafine的壓力下所造成型態改變之探討
論文名稱(外文):Study on Morphological Changes of Candida albicans under Stress of Fluconazole and Terbinafine
指導教授:蘇慶華蘇慶華引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:白色念珠菌
外文關鍵詞:candida albicans
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白色念珠菌(Candida albicans)屬於不完全菌亞門(Deuteromycotina),為出芽型酵母,自然界中以二倍體(Diploid)的形式存在。直至今日,都尚未有關於白色念珠菌單倍體(haploid)及其減數分裂(meiosis)之相關報告,其基因之重組機制也只有擬有性世代(parasexual)的發現。由於白色念珠菌的mating locus與麵包酵母(Saccharomyces cerevisiae)具有相似的同源基因,因此大多都認為C. albicans較接近子囊菌。白色念珠菌在形態上自然會進行白色/渾濁之轉換(White/Opaque switching),其機率約為萬分之一,而此兩種形態相對之基因形則為異型合子(heterozygote, ex: a/α)及同型合子(homozygote, ex: a/a, α/α)。本實驗室曾發現Fluconazole及Terbinafine等抗真菌藥物會使得白色念珠菌白色/渾濁形態轉換之機率顯著提高至1.765x10-1,因此推測其中有減數分裂發生之可能性。本研究以光學顯微鏡(optical microscopy)觀察,經200 ug/mL Terbinafine處理之白色念珠菌株細胞形態,可於抑菌圈周圍發現到之多重出芽細胞群,為一個大的母細胞周圍帶有2至4個較小的子細胞(類似Snoopy掌印,尚稱Snoopy),而對照處理之細胞形態則為球狀細胞或單出芽型細胞,與一般細胞無異。研究進一步以共軛焦顯微鏡(confocal microscopy)觀察,經Terbinafine處理之白色念珠菌母細胞之細胞核變化,經由DAPI染色,在一到兩星期時大母細胞中有四核期的產生,且在三到四星期時可以看到母細胞呈現凹陷狀,無核,並將四個核送入新生之較小出芽子細胞中。此觀察結果與減數分裂之假設符合,可提供作為形態上之證據。此外本研究以掃描式電子顯微鏡觀察亦可以看到母細胞呈現凹陷狀的結果。同樣地,在穿透式電子顯微鏡下發現,母細胞與子細胞之間的出芽構造與控制組細胞不同。由以上型態之觀察結果傾向於C. albicans可能是擔子菌。因此可能推翻之前學者認為C. albicans接近子囊菌的假說。至於Azole及Allylamine等藥物會造成此一型態改變之機轉,則需進一步的探討。
Candida albicans is similar to Saccharomyces cerevisiae (Deuteromycotina), has a diploid genome and asexual life cycle in nature. Until now, there is no report to present sexual processing in C. albicans yet. Because of the fact that homologous genes of mating locus in C. albicans were identified to S. cerevisiae, previous studies revealed C. albicans belonged to Ascomycota. C. albicans processed a low frequency (under 10-4 ratio) white-opaque switch in nature, white phase is heterozygote and opaque phase is homozygote. The cloudy zone test results for multi-budding population of C. albicans via 200 ug/mL Terbinafine treated were observed by optical microscopy. 2-4 daughter cells surrounded a mother cell (snoopy’s paw-like), compared with the control group. Previous study in our lab (Ou et al., 2007), the phenomenon which C. albicans had a high frequency (above 1.765x10-1 ratio) white-opaque switch in anti-bacterial drugs treated condition such as Fluconazole or Terbinafine were observed, so, we presumed that meiosis may happened in C. albicans . Furniture study, nuclei change of C. albicans which were treated by Terbinafine via DAPI staining were observed by confocal microscopy.1-2 weeks, mother cells went through 4 nuclei phase and 3-4 weeks, mother cells presented a cuppy phenotype which had no nucleus, and the 4 nuclei transferred to the budding offspring. These data corresponded with our hypothesis, which provided a morphological evidence strongly. In addition, we could observe that mother cells presented cuppy phenotype by SEM technology in this study. Similarly, we could find out the peduncle structure between mother and daughter cells were different from the control group. According to these results, C. albicans might classify to basidium subkingdom. Accordingly, these findings might overthrow previous studies which are considered as the fact that C. albicans belong to Ascomycota. With respect to the changed type of mechanism of C. albicans via the effect of Azole or Allylamine, it need to be studied further more.
壹、前言 1
第一章 白色念珠菌 1
1-1 白色念珠菌的簡介 1
1-2 白色念珠菌的分類 2
1-3 研究動機 3
第二章 白色念珠菌的交配型態 4
2-1 白色念珠菌交配系統(mating system)的發現 4
2-2 白色念珠菌的表現形 4
2-3 白色念珠菌的交配 7
2-4 白色念珠菌交配與White-Opaque switching間的關係 8
2-5 白色念珠菌交配之細胞生物學 9
第三章 抗真菌藥物 11
3-1 抗真菌藥物種類和機制 11
3-2 白色念珠菌與Terbinafiner及Fluconazole 13
第四章 本研究相關之酵母菌 15
4-1 麵包酵母 15
4-2 新型隱球菌 15
第五章 本實驗室前期研究 16
第六章 論文研究動機與目標
6-1 研究動機 18
6-2 研究目的 19
貳、實驗架構 20
參、實驗材料與方法 21
一 材料 21
二 培養基 23
三 實驗方法 25
3-1抗真菌類藥物敏感性試驗對白色念珠菌opaque出現頻率之影響 25
3-2形態觀察 28
3-3 在光學顯微鏡下觀察多重出芽細胞與W/O表現形轉換頻率之相關性 34
肆、實驗結果 35
4-1 抗真菌類藥物敏感性試驗( E-test )對白色念珠菌opaque出現頻率之影響 35
4-2形態觀察 42
4-3 在光學顯微鏡下觀察多重出芽細胞與W/O表現形轉換頻率之相關性 58
伍、討論 62
陸、結論 72
柒、未來工作 73
捌、參考文獻 74
1.Hsueh, P.R., et al., Emergence of nosocomial candidemia at a teaching hospital in Taiwan from 1981 to 2000: increased susceptibility of Candida species to fluconazole. Microb Drug Resist, 2002. 8(4): p. 311-9.
2.Ruhnke, M. and G. Maschmeyer, Management of mycoses in patients with hematologic disease and cancer -- review of the literature. Eur J Med Res, 2002. 7(5): p. 227-35.
3.Calderone, R.A. and W.A. Fonzi, Virulence factors of Candida albicans. Trends Microbiol, 2001. 9(7): p. 327-35.
4.Chen, Y.C., et al., Secular trends in the epidemiology of nosocomial fungal infections at a teaching hospital in Taiwan, 1981 to 1993. Infect Control Hosp Epidemiol, 1997. 18(5): p. 369-75.
5.Diener, A.C. and G.R. Fink, DLH1 is a functional Candida albicans homologue of the meiosis-specific gene DMC1. Genetics, 1996. 143(2): p. 769-76.
6.Znaidi, S., et al., Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot Cell, 2008. 7(5): p. 836-47.
7.Ramage, G., et al., Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother, 2002. 49(6): p. 973-80.
8.Hull, C.M. and A.D. Johnson, Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science, 1999. 285(5431): p. 1271-5.
9.Hull, C.M., R.M. Raisner, and A.D. Johnson, Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host. Science, 2000. 289(5477): p. 307-10.
10.Pomes, R., C. Gil, and C. Nombela, Genetic analysis of Candida albicans morphological mutants. J Gen Microbiol, 1985. 131(8): p. 2107-13.
11.Slutsky, B., J. Buffo, and D.R. Soll, High-frequency switching of colony morphology in Candida albicans. Science, 1985. 230(4726): p. 666-9.
12.Soll, D.R., Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays, 2004. 26(1): p. 10-20.
13.Slutsky, B., et al., "White-opaque transition": a second high-frequency switching system in Candida albicans. J Bacteriol, 1987. 169(1): p. 189-97.
14.Goshorn, A.K. and S. Scherer, Genetic analysis of prototrophic natural variants of Candida albicans. Genetics, 1989. 123(4): p. 667-73.
15.Anderson, J.M. and D.R. Soll, Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol, 1987. 169(12): p. 5579-88.
16.Soll, D.R., Gene regulation during high-frequency switching in Candida albicans. Microbiology, 1997. 143 ( Pt 2): p. 279-88.
17.Bennett, R.J. and A.D. Johnson, Mating in Candida albicans and the search for a sexual cycle. Annu Rev Microbiol, 2005. 59: p. 233-55.
18.Hicks, J.B., Developmental genetics: mechanisms of differentiation. Nature, 1987. 326(6112): p. 444-5.
19.Morrow, B., T. Srikantha, and D.R. Soll, Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol, 1992. 12(7): p. 2997-3005.
20.Balan, I., A.M. Alarco, and M. Raymond, The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol, 1997. 179(23): p. 7210-8.
21.Srikantha, T. and D.R. Soll, A white-specific gene in the white-opaque switching system of Candida albicans. Gene, 1993. 131(1): p. 53-60.
22.Lockhart, S.R., et al., In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics, 2002. 162(2): p. 737-45.
23.Kelly, S.L., et al., Characterization of Saccharomyces cerevisiae CYP61, sterol delta22-desaturase, and inhibition by azole antifungal agents. J Biol Chem, 1997. 272(15): p. 9986-8.
24.White, T.C., et al., Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient. Oral Dis, 1997. 3 Suppl 1: p. S102-9.
25.Rex, J.H., M.G. Rinaldi, and M.A. Pfaller, Resistance of Candida species to fluconazole. Antimicrob Agents Chemother, 1995. 39(1): p. 1-8.
26.Albertson, G.D., et al., Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother, 1996. 40(12): p. 2835-41.
27.Perea, S., et al., Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother, 2001. 45(10): p. 2676-84.
28.Lockhart, S.R., et al., Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of Candida albicans. Genetics, 2005. 169(4): p. 1883-90.
29. Soll, D.R., et al., High-frequency switching in Candida strains isolated from vaginitis patients. J Clin Microbiol, 1987. 25(9): p. 1611-22.
30. Miller, M.G. and A.D. Johnson, White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell, 2002. 110(3): p. 293-302.
31. Magee, B.B. and P.T. Magee, Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science, 2000. 289(5477): p. 310-3.
32. Cross, F., et al., Conjugation in Saccharomyces cerevisiae. Annu Rev Cell Biol, 1988. 4: p. 429-57.
33. Lockhart, S.R., et al., Cell biology of mating in Candida albicans. Eukaryot Cell, 2003. 2(1): p. 49-61.
34. Lachke, S.A., et al., Skin facilitates Candida albicans mating. Infect Immun, 2003. 71(9): p. 4970-6.
35. Georgopapadakou, N.H. and T.J. Walsh, Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother, 1996. 40(2): p. 279-91
36. Brajtburg, J., et al., Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother, 1990. 34(2): p. 183-8.
37. Gallis, H.A., R.H. Drew, and W.W. Pickard, Amphotericin B: 30 years of clinical experience. Rev Infect Dis, 1990. 12(2): p. 308-29.
38. White, T.C., K.A. Marr, and R.A. Bowden, Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev, 1998. 11(2): p. 382-402.
39. Bolard, J., How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta, 1986. 864(3-4): p. 257-304.
40. Fromtling, R.A., Overview of medically important antifungal azole derivatives. Clin Microbiol Rev, 1988. 1(2): p. 187-217.
41. Vanden Bossche, H., Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. Curr Top Med Mycol, 1985. 1: p. 313-51.
42. Petranyi, G., N.S. Ryder, and A. Stutz, Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science, 1984. 224(4654): p. 1239-41.
43. Rosowsky, A., J.B. Hynes, and S.F. Queener, Structure-activity and structure-selectivity studies on diaminoquinazolines and other inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother, 1995. 39(1): p. 79-86.
44. Ryder, N.S., Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci, 1988. 544: p. 208-20.
45. Georgopapadakou, N.H. and A. Bertasso, Effects of squalene epoxidase inhibitors on Candida albicans. Antimicrob Agents Chemother, 1992. 36(8): p. 1779-81.
46. Wenzel, R.P. and C. Gennings, Bloodstream infections due to Candida species in the intensive care unit: identifying especially high-risk patients to determine prevention strategies. Clin Infect Dis, 2005. 41 Suppl 6: p. S389-93.
47. Albertson, G.D., et al., Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother, 1996. 40(12): p. 2835-41.
48. Chen, Y.C., et al., Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years. J Antimicrob Chemother, 2003. 52(1): p. 71-7.
49. Hitchcock, C.A., K.J. Barrett-Bee, and N.J. Russell, The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J Med Vet Mycol, 1987. 25(1): p. 29-37.
50. Odds, F.C., Candida albicans, the life and times of a pathogenic yeast. J Med Vet Mycol, 1994. 32 Suppl 1: p. 1-8.
51. Lo, W.S., E.I. Raitses, and A.M. Dranginis, Development of pseudohyphae by embedded haploid and diploid yeast. Curr Genet, 1997. 32(3): p. 197-202.
52. Ernst, J.F., Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology, 2000. 146 ( Pt 8): p. 1763-74.
53. Haynes, K., Virulence in Candida species. Trends Microbiol, 2001. 9(12): p. 591-6.
54. Lan, C.Y., et al., Metabolic specialization associated with phenotypic switching in Candidaalbicans. Proc Natl Acad Sci U S A, 2002. 99(23): p. 14907-12.
55. Lu, J.J., S.Y. Lee, and T.S. Chiueh, In vitro antifungal susceptibility testing of Candida blood isolates and evaluation of the E-test method. J Microbiol Immunol Infect, 2004. 37(6): p. 335-42.
56. Olaiya, A.F. and S.J. Sogin, Ploidy determination of Canadida albicans. J Bacteriol, 1979. 140(3): p. 1043-9.
57. Riggsby, W.S., et al., DNA content, kinetic complexity, and the ploidy question in Candida albicans. Mol Cell Biol, 1982. 2(7): p. 853-62.
58. Whelan, W.L., R.M. Partridge, and P.T. Magee, Heterozygosity and segregation in Candida albicans. Mol Gen Genet, 1980. 180(1): p. 107-13.
59. Leberer, E., et al., Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13217-22.
60. Tzung, K.W., et al., Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci U S A, 2001. 98(6): p. 3249-53.
61. Tsong, A.E., et al., Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell, 2003. 115(4): p. 389-99.
62. Bennett, R.J. and A.D. Johnson, Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J, 2003. 22(10): p. 2505-15.
63. Pujol, C., et al., The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. Proc Natl Acad Sci U S A, 1993. 90(20): p. 9456-9.
64. Graser, Y., et al., Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc Natl Acad Sci U S A, 1996. 93(22): p. 12473-7.
65. Taylor, J.W., et al., The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev, 1999. 12(1): p. 126-46.
66. 歐聰億等 台北醫學大學碩士論文 抗真菌藥Fluconazole對白色念珠菌臨床菌株形態學影響之探討
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔