中文部分:
1.朱嘉雯。案例式推理與類神經網路在心電圖診斷之應用研究。真理大學管理科學研究所。民93年。碩士論文
2.葉怡成,「應用類神經網路」,儒林圖書公司,2001年。
3.熊正輝,「以類神經網路為工具預估癌症末期病人之存活」,財團法人安寧照顧基金會研究成果,2000年。
4.羅華強,「類神經網路MATLAB的應用-類神經網路的介紹」,清蔚科技,2001年,pp.1-10
5.張志華。預測冠狀動脈繞道手術之重大併發症 - 類神經網路模型之建構及分析。台北醫學大學醫學資訊研究所。民92年。碩士論文。6.行政院衛生署。死亡統計。http://www.doh.gov.tw/lane/statist/83/83stat3-52.html,1994。
7.葉怡成(1999)。「類神經網路模式應用與實作」,六版。臺北:儒林出版社
8.林朝順。建立類神經網路模型以預測propofol用於麻醉誘導時所產生的睡眠效應。台北醫學大學醫學資訊研究所。民91年。碩士論文。
1-45
1.Hill M. Etiology of the adenoma-carcinoma sequence. Major problems in pathology 1978;10:153-62.
2.Hill MJ, Morson BC, Bussey HJ. Aetiology of adenoma--carcinoma sequence in large bowel. Lancet 1978;1:245-7.
3.Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA: a cancer journal for clinicians 2000;50:7-33.
4.de Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-aided diagnosis of acute abdominal pain. British medical journal 1972;2:9-13.
5.Hudson DL, Cohen ME, IEEE Engineering in Medicine and Biology Society. Neural networks and artificial intelligence for biomedical engineering. New York: IEEE Press; 2000.
6.Gorry GA, Kassirer JP, Essig A, Schwartz WB. Decision analysis as the basis for computer-aided management of acute renal failure. The American journal of medicine 1973;55:473-84.
7.McCulloh WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943;5:115-33.
8.Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: a tutorial. Comput IEEE 1996 Mar:31-44.
9.Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods 2000;43:3-31.
10.Hecht-Nielsen R. Cogent confabulation. Neural Netw 2005;18:111-5.
11.Schalkoff RJ. Artificial Neural Networks. New York: McGraw-Hill; 1997.
12.SEER Program (National Cancer Institute (U.S.)), Fritz AG, Ries LAG. The SEER Program code manual. 3rd ed. [Bethesda, Md.?]: Cancer Statistics Branch, Surveillance Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Public Health Service, U.S. Dept. of Health and Human Services; 1998.
13.Beahrs OH. Colorectal cancer staging as a prognostic feature. Cancer 1982;50:2615-7.
14.Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36.
15.Beahrs OH. The American Joint Committee on Cancer. Bulletin of the American College of Surgeons 1984;69:16-7.
16.Beahrs OH. Staging of cancer of the breast as a guide to therapy. Cancer 1984;53:592-4.
17.McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943. Bulletin of mathematical biology 1990;52:99-115; discussion 73-97.
18.Astion ML, Wilding P. Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clinical chemistry 1992;38:34-8.
19.Gabor AJ, Seyal M. Automated interictal EEG spike detection using artificial neural networks. Electroencephalography and clinical neurophysiology 1992;83:271-80.
20.Goldberg V, Manduca A, Ewert DL, Gisvold JJ, Greenleaf JF. Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence. Medical physics 1992;19:1475-81.
21.O''Leary TJ, Mikel UV, Becker RL. Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Mod Pathol 1992;5:402-5.
22.Ravdin PM, Clark GM. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Research & Treatment 1992;22:285-93.
23.Westenskow DR, Orr JA, Simon FH, Bender HJ, Frankenberger H. Intelligent alarms reduce anesthesiologist''s response time to critical faults. Anesthesiology 1992;77:1074-9.
24.Burke HB, Henson DE. The American Joint Committee on Cancer. Criteria for prognostic factors and for an enhanced prognostic system. Cancer 1993;72:3131-5.
25.Fielding LP, Henson DE. Multiple prognostic factors and outcome analysis in patients with cancer. Communication from the American Joint Committee on Cancer. Cancer 1993;71:2426-9.
26.Tourassi GD, Floyd CE, Sostman HD, Coleman RE. Acute pulmonary embolism: artificial neural network approach for diagnosis. Radiology 1993;189:555-8.
27.Wu Y, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 1993;187:81-7.
28.Burke HB. Artificial neural networks for cancer research: outcome prediction. Seminars in surgical oncology 1994;10:73-9.
29.Clark GM, Hilsenbeck SG, Ravdin PM, De Laurentiis M, Osborne CK. Prognostic factors: rationale and methods of analysis and integration. Breast cancer research and treatment 1994;32:105-12.
30.Baxt WG. Application of artificial neural networks to clinical medicine. Lancet 1995;346:1135-8.
31.Cross SS, Harrison RF, Kennedy RL. Introduction to neural networks. Lancet 1995;346:1075-9.
32.Dybowski R, Gant V. Artificial neural networks in pathology and medical laboratories. Lancet 1995;346:1203-7.
33.Kaminsky FC, Burke RJ, Haberle KR, Mullins DL. Statistical analysis of data in cervical cytology from the viewpoint of total quality management. Acta cytologica 1995;39:222-31.
34.Baxt WG, Skora J. Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet 1996;347:12-5.
35.Cady B, Stone MD, Schuler JG, Thakur R, Wanner MA, Lavin PT. The new era in breast cancer. Invasion, size, and nodal involvement dramatically decreasing as a result of mammographic screening. Arch Surg 1996;131:301-8.
36.Dybowski R, Weller P, Chang R, Gant V. Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 1996;347:1146-50.
37.Barth A, Craig PH, Silverstein MJ. Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 1997;79:1918-22.
38.Bottaci L, Drew PJ, Hartley JE, et al. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 1997;350:469-72.
39.Burke HB, Goodman PH, Rosen DB, et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997;79:857-62.
40.Jefferson MF, Pendleton N, Lucas SB, Horan MA. Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer 1997;79:1338-42.
41.April Fritz A, CTR, Lynn Ries M. The SEER Program Code Manual. In: National Cancer Institute; 1998.
42.Hecht-Nielsen R. Applications of counterpropagation networks. Neural Networks 1998;1:131-9.
43.Lundin M, Lundin J, Burke HB, Toikkanen S, Pylkkanen L, Joensuu H. Artificial neural networks applied to survival prediction in breast cancer. Oncology 1999;57:281-6.
44.Ramoni M, Sebastiani P, Dybowski R. Robust outcome prediction for intensive-care patients. Methods of information in medicine 2001;40:39-45.
45.Selaru FM, Xu Y, Yin J, et al. Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions. Gastroenterology 2002;122:606-13.