(3.236.214.19) 您好!臺灣時間:2021/05/06 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張良宇
研究生(外文):Liang-Yu Chang
論文名稱:接枝聚異丙基丙烯醯胺的聚碳酸酯電紡薄膜做為細胞培養用基質之探討
論文名稱(外文):Grafting polymerized N-isopropylacrylamide into electrospun polycarbonate fine-fibrous membrane as a matrix for cells culture
指導教授:曾厚
指導教授(外文):How Tseng
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生物醫學材料研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:100
中文關鍵詞:細胞工學聚異丙基丙烯醯胺碳酸聚酯電氣紡絲
外文關鍵詞:cell engineeringpolycarbonatepoly(N-isopropylacrylamide)PIPAAmelectrospinning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
如何在最短的時間內修補身體上的受損的部分,向來都是醫學界所努力的目標。組織工程(Tissue engineering)便因應而生,其主要是由細胞(Cell)、訊息因子(Signal factor)與細胞外間質(Extra cellular matrix;ECM)所構成。而本研究便是將焦點放在支架的部分。本研究以聚碳酸酯高分子Polycarbonate(PC)為原料,利用電氣紡織技術,製備出具有高孔洞率之纖維薄膜,在製備的過程當中,控制不同的變因(輸液速度、電壓差的不同、溶液的配方不同等),製備出具有高強力及高孔洞率的PC薄膜,並在PC薄膜上用電漿進行表面改質,並接枝上poly-NIPPAm。poly-NIPPAm是種感溫材質,其特性為在32?aC以上呈現疏水性,與水分離;在32?aC以下時,呈現親水性,與水結合。本研究使用poly-NIPAAm用於細胞培養並以electrospinning(電氣紡絲)的技術製備PC membrane,此技術的優點為可製作出3D結構的材料且其具有高孔洞率,所製得的PC membrane以plasma進行表面改質的工作;之後在薄膜上加入NIPAAm單體的溶液進行接枝聚合。,經由electrospinning製作出來的PC membrane其孔洞大小分布在6-10μm,再接枝上poly-NIPAAm後無太大的改變且PC memebrane其孔洞率都可維持在70%以上。以相同條件所製備出的PC/poly-NIPAAm薄膜進行通透性實驗證明改質過後的PC membrane所需時間較市售insert上的PET membrane短2-3個小時。再將製備好的Poly-NIPAAm/PC membrane以3T3 cell進行細胞毒性測試,藉由細胞毒性測驗的實驗發現到Poly-NIPAAm/PC membrane為具有良好的生物相容性的材料。
In this study, the electrospinning technique was utilized, and polycarbonate was used to fabricate fine-fibrous membrane. We also prepared membranes with different features by controlling factors (different concentration in solute, feeding rate, changes in voltage).To investigate more strong and more highly porosity PC membrane, the PC membrane was treated by plasma to change the property of the surface . After the modification, poly(N-isopropylacrylamide)PIPAAm grafted in PC membrane for used in cell culture. The structure and morphology of electrospun membranes were investigated by scanning electron microscope (SEM), pore size measuring, and contact angle detector. NIH 3T3 was cultured on the modified membrane to observe the cell morphology, attachment, and proliferation. The 12.5%(wt/V) PC solution contain a mixture solvent of Dichloromethane, Methanol, Acetone, 1-4’dioxane(80:10:2:8) and the feeding rate keeps in 0.08ml/min. The solution was electrospun into non-woven fiber mesh with fiber diameter ranging from 1.1 to 2,5μm and pore size was measured 3~8μm. PNIPAAm was immobilized onto PC non-woven surface. This composites material was considered to replace the PET membrane in trans-well insert. While going to cell culture with this composites material, we can get cells called “cell sheet engineering” not like usual cell suspension. The cell cultured by this new technology will proceed detachment without any enzyme and own ECM(extra cellular matrix) to keep their 3D scaffold while growing up.
目錄
中文摘要 XI
英文摘要 XIII
第一章 緒論 1
1.1前言 1
1.1.1組織再生與修復 1
1.1.2組織工程的源起 2
1.2研究動機 3
1.3研究目的 4
第二章 論文回顧
Overview 6
2.1組織工程 6
2.2電漿表面改質的技術 8
2.3 NIPAAm高分子的介紹 9
2.4 Cell sheet engineering的概念 10
2.5 Electrospinning技術的介紹 11
第三章 材料與方法 14
3.1材料與試劑 14
3.2儀器設備 14
3.3.a實驗流程圖 16
3.3研究方法 17
3.3.1實驗模型的建立 17
3.3.2薄膜製備 18
3.3.2.1溶液的特性 19
3.3.2.2輸液速率的調控 19
3.3.2.3射出電壓之調控 20
3.3.2.4收集板轉動速率之調控 20
3.4實驗步驟 21
3.4.1 PC薄膜的製備 21
3.4.2膜厚的測定 21
3.4.3孔洞大小的測定 21
3.4.4材質表面型態的觀察 22
3.4.5機械強度測試 22
3.4.6接觸角的測試 22
3.4.7將NIPAAm接枝在PC membrane 23
3.4.8 PC/poly-NIPAAm membrane通透性實驗 23
3.4.9黏度測試(動靜黏度分析) 24
3.5細胞培養、貼附、增生與脫離實驗 25
3.5.1解凍細胞與繼代培養 25
3.5.2細胞計數 26
3.5.3細胞貼附實驗 27
3.5.4細胞增生實驗 28
3.5.5細胞毒性測試 28
3.5.6細胞脫離基材實驗 29
第四章 實驗結果 31
4.1電氣紡絲設備之配置與射出模型的建立 31
4.1.1電氣紡絲之設備 31
4.2溶液特性對於薄膜基材帶來的影響 32
4.2.1濃度與溶劑對於電氣紡絲的影響 32
4.2.2溶劑配方對於電氣紡絲纖維的影響 33
4.2.3溶劑配方中1,4-Dioxane的加入 34
4.3探討機械條件對於薄膜基材帶來的影響 34
4.3.1輸液速率與纖維直徑關係 35
4.3.2射出電壓與纖維直徑關係 36
4.3.3收集板轉動速率與纖維直徑關係 37
4.4探討poly-NIPAAm其濃度的影響 39
4.5探討薄膜結構的物化特性 39
4.5.1膜厚的測定 40
4.5.2孔洞大小的測定 40
4.5.3孔洞率的分析 41
4.5.4 PC membrane及PC/poly-NIPAAm mrmbrane
在SEM下的觀察 41
4.5.6接觸角的測試 42
4.5.7通透性的實驗 42
4.5.8 poly-NIPAAm黏度測試 43
4.5.9 poly-NIPAAm示差示掃描分析 43
4.6細胞毒性測試 43
第五章 討論 44
5.1電氣紡絲設備之配置與射出模型之建立 44
5.2製成變因與薄膜結構之關係 45
5.2.1溶液濃度與纖維直徑關係 45
5.2.2射出電壓與纖維直徑關係 46
5.2.3輸液速率與纖維直徑關係 46
5.2.4收集板轉動速率與纖維直徑關係 47
5.3 poly-NIPAAm其濃度的影響 48
5.4接枝後薄膜的物性觀察 48
5.5生物相容性測試 50
第六章 結論 51
第七章 參考文獻 53
1.D.W. Hutmacher, N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y. Sakurai, A commentary on "Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells" by N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y. Sakurai (Makromol. Chem., Rapid Commun. 1990, 11, 571-576). Macromolecular Rapid Communications, 2005. 26(7): p. 505-513.
2.U. Boudriot, R. Dersch, A. Greiner, J.H. Wendorff, Electrospinning approaches toward scaffold engineering - A brief overview. Artificial Organs, 2006. 30(10): p. 785-792.
3.R. Langer, J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.
4.G. Liu, L. Zhao, W. Zhang, L. Cui, W. Liu, Y. Cao, Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate. Journal of Materials Science: Materials in Medicine, 2008. 19(6): p. 2367-2376.
5.A.W. Morgan, K.E. Roskov, S. Lin-Gibson, D.L. Kaplan, M.L. Becker, C.G. Simon Jr, Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials, 2008. 29(16): p. 2556-2563.
6.M. Matsusaki, H. Yoshida, M. Akashi, The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials, 2007. 28(17): p. 2729-2737.
7.G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, S. Ryu, Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2007. 82(2): p. 445-454.
8.L. Zhang, Y.L. Hsieh, Ultra-fine cellulose acetate/poly(ethylene oxide) bicomponent fibers. Carbohydrate Polymers, 2008. 71(2): p. 196-207.
9.V.J. Chen, L.A. Smith, P.X. Ma, Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials, 2006. 27(21): p. 3973-3979.
10.Y. Tsuda, T. Shimizu, M. Yamato, A. Kikuchi, T. Sasagawa, S. Sekiya, J. Kobayashi, G. Chen, T. Okano, Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials, 2007. 28(33): p. 4939-4946.
11.H.C. Ott, T.S. Matthiesen, S.K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, D.A. Taylor, Perfusion-decellularized matrix: Using nature''s platform to engineer a bioartificial heart. Nature Medicine, 2008. 14(2): p. 213-221.
12.S.F. Badylak, Extracellular matrix as a scaffold for tissue engineering in veterinary medicine: Applications to soft tissue healing. Clinical Techniques in Equine Practice, 2004. 3(2 SPEC. ISS.): p. 173-181.
13.P.A. Tamirisa, J. Koskinen, D.W. Hess, Plasma polymerized hydrogel thin films. Thin Solid Films, 2006. 515(4): p. 2618-2624.
14.K. Akamatsu, T. Ito, T. Yamaguchi, Development of enzyme-encapsulated microcapsule reactors with ion-responsive shell membranes. Journal of Chemical Engineering of Japan, 2007. 40(7): p. 590-597.
15.J. Huang, X.L. Wang, W.S. Qi, X.H. Yu, Temperature sensitivity and electrokinetic behavior of a N-isopropylacrylamide grafted microporous polyethylene membrane. Desalination, 2002. 146(1-3): p. 345-351.
16.K.S. Chen, J.C. Tsai, C.W. Chou, M.R. Yang, J.M. Yang, Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface. Materials Science and Engineering C, 2002. 20(1-2): p. 203-208.
17.K. Akamatsu, T. Yamaguchi, Novel preparation method for obtaining pH-responsive core-shell microcapsule reactors. Industrial and Engineering Chemistry Research, 2007. 46(1): p. 124-130.
18.M. Kuzuya, Novel pharmaceutical and biomedical applications of plasma techniques. Yakugaku Zasshi, 2006. 126(7): p. 439-454.
19.K.S. Chen, Y.A. Ku, C.H. Lee, H.R. Lin, F.H. Lin, T.M. Chen, Immobilization of chitosan gel with cross-linking reagent on Poly-NIPAAm gel/PP nonwoven composites surface. Materials Science and Engineering C, 2005. 25(4): p. 472-478.
20.F.H. Lin, T.M. Chen, K.S. Chen, T.H. Wu, C.C. Chen, Animal study of a novel tri-layer wound dressing material - non-woven fabric grafted with N-isopropyl acrylamide and gelatin. Materials Chemistry and Physics, 2000. 64(3): p. 189-195.
21.A. Kushida, M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, T. Okano, Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. Journal of Biomedical Materials Research, 1999. 45(4): p. 355-362.
22.A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, T. Okano, Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials.
23.A. Kikuchi, M. Okuhara, F. Karikusa, Y. Sakurai, T. Okano, Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly(N-isopropylacrylamide)-grafted surfaces. Journal of Biomaterials Science, Polymer Edition, 1998. 9(12): p. 1331-1348.
24.M. Yamato, A. Kushida, T. Okano, Intelligent culture dishes that allow noninvasive recovery of cultured cells: Tissue reconstruction from cell sheet. Japanese Journal of Artificial Organs, 1999. 28(3): p. 577-581.
25.M. Hirose, O.H. Kwon, M. Yamato, A. Kikuchi, T. Okano, Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules, 2000. 1(3): p. 377-381.
26.A. Kushida, M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, T. Okano, Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. Journal of Biomedical Materials Research, 2000. 51(2): p. 216-223.
27.T. Shimizu, M. Yamato, T. Akutsu, T. Shibata, Y. Isoi, A. Kikuchi, M. Umezu, T. Okano, Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. Journal of Biomedical Materials Research, 2002. 60(1): p. 110-117.
28.M. Yamato, A. Kushida, T. Okano, Cell adhesion and detachment control toward cell sheet engineering utilizing temperature-responsive intelligent culture dishes. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 2000. 45(10): p. 1766-1772.
29.M. Yamato, M. Hirose, M. Harimoto, T. Okano, Cell and cell sheet manipulation by utilizing biomaterials--development of cell sheet engineering. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 2000. 45(13 Suppl): p. 2156-2161.
30.T. Okano. Cell sheet engineering for tissues and organs regeneration. in Transactions - 7th World Biomaterials Congress. 2004. Sydney.
31.Y. Sato, A. Kushida, M. Yamato, T. Sawada, T. Okano, T. Agishi, Cell sheet engineering with culture dishes grafted with a temperature-responsive polymer. ASAIO Journal, 2000. 46(2): p. 242.
32.M. Harimoto, M. Yamato, A. Kikuchi, T. Okano, Cell sheet engineering: Intelligent polymer patterned surfaces for tissue engineered liver. Macromolecular Symposia, 2003. 195: p. 231-235.
33.J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine, F. Fukai, T. Okano, Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials, 2005. 26(33): p. 6415-6422.
34.J. Yang, M. Yamato, T. Okano, Cell-sheet engineering using intelligent surfaces. MRS Bulletin, 2005. 30(3): p. 189-193.
35.T. Okano, Cell sheet engineering. Clinical Neurology, 2006. 46(11): p. 795-798.
36.M. Yamato, T. Okano, Cell sheet engineering. Materials Today, 2004. 7(5): p. 42-47.
37.K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, Y. Tano, Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New England Journal of Medicine, 2004. 351(12): p. 1187-1196.
38.T. Shimizu, M. Yamato, A. Kikuchi, T. Okano. Three-dimensional construction of cultured cardiac myocytes and augmentation of their pulsatile ability by cell sheet manipulation utilizing temperature-responsive culture dishes. in Second Smith and Nephew International Symposium - Tissue Engineering 2000: Advances in Tissue Engineering, Biomaterials and Cell Signalling. 2000. York.
39.H. Sekine, T. Shimizu, J. Yang, E. Kobayashi, T. Okano, Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation, 2006. 114(SUPPL. 1).
40.K. Morishima, Y. Tanaka, T. Shimizu, M. Yamato, A. Kikuchi, T. Okano, T. Kitamori. Nano liquid handling with bio-actuated micro heart pump powered by cardiomyocytes sheet. in 2005 5th IEEE Conference on Nanotechnology. 2005. Nagoya.
41.T. Shimizu, H. Sekine, Y. Isoi, M. Yamato, A. Kikuchi, T. Okano, Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Engineering, 2006. 12(3): p. 499-507.
42.A. Kubota, K. Nishida, M. Yamato, J. Yang, A. Kikuchi, T. Okano, Y. Tano, Transplantable retinal pigment epithelial cell sheets for tissue engineering. Biomaterials, 2006. 27(19): p. 3639-3644.
43.M. Kanzaki, M. Yamato, H. Hatakeyama, C. Kohno, J. Yang, T. Umemoto, A. Kikuchi, T. Okano, T. Onuki, Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Engineering, 2006. 12(5): p. 1275-1283.
44.K. Ohashi, T. Yokoyama, M. Yamato, H. Kuge, H. Kanehiro, M. Tsutsumi, T. Amanuma, H. Iwata, J. Yang, T. Okano, Y. Nakajima, Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nature Medicine, 2007. 13(7): p. 880-885.
45.J. Yang, M. Yamato, K. Nishida, T. Ohki, M. Kanzaki, H. Sekine, T. Shimizu, T. Okano, Cell delivery in regenerative medicine: The cell sheet engineering approach. Journal of Controlled Release, 2006. 116(2 SPEC. ISS.): p. 193-203.
46.Z. Tang, A. Kikuchi, Y. Akiyama, T. Okano, Novel cell sheet carriers using polyion complex gel modified membranes for tissue engineering technology for cell sheet manipulation and transplantation. Reactive and Functional Polymers, 2007. 67(11 SPEC. ISS.): p. 1388-1397.
47.N. Matsuda, T. Shimizu, M. Yamato, T. Okano, Tissue engineering based on cell sheet technology. Advanced Materials, 2007. 19(20): p. 3089-3099.
48.F. Anton, Process and apparatus for preparing artificial threads. 1934.
49.F. Anton, Method of producing artificial fibers. 1939.
50.F. Anton, Method and apparatus for the production of artificial fibers. 1939.
51.F. Anton, Method and apparatus for spinning. 1939.
52.F. Anton, Artificial thread and method of producing same. 1940.
53.F. Anton, Production of artificial fibers from fiber forming liquids. 1943.
54.F. Anton, Method and apparatus for spinning. 1944.
55.P.K. Baumgarten, Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 1971. 36(1): p. 71-79.
56.L. Larrondo, R.S.J. Manley, ELECTROSTATIC FIBER SPINNING FROM POLYMER MELTS - 1. EXPERIMENTAL OBSERVATIONS ON FIBER FORMATION AND PROPERTIES. Journal of polymer science. Part A-2, Polymer physics, 1981. 19(6): p. 909-920.
57.L. Larrondo, R.S.J. Manley, ELECTROSTATIC FIBER SPINNING FROM POLYMER MELTS - 3. ELECTROSTATIC DEFORMATION OF A PENDANT DROP OF POLYMER MELT. Journal of polymer science. Part A-2, Polymer physics, 1981. 19(6): p. 933-940.
58. L. Larrondo, R.S.J. Manley, ELECTROSTATIC FIBER
SPINNING FROM POLYMER MELTS - 2. EXAMINATION OF THE FLOW FIELD IN AN ELECTRICALLY DRIVEN JET. Journal of polymer science. Part A-2, Polymer physics, 1981. 19(6): p. 921-932
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔