(34.229.64.28) 您好!臺灣時間:2021/05/06 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪維彊
研究生(外文):Wei-Chiang Hung
論文名稱:多孔性鈦基植體之生醫相容性研究
論文名稱(外文):Research of biocompatibility on titanium-based implant with porosity
指導教授:歐耿良
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生醫材料暨工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:69
中文關鍵詞:生物相容性鈦合金奈米多孔性的二氧化鈦
外文關鍵詞:biocompatibilityTitanium-based alloynanoporous-TiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於諸多的研究顯示,鈦金屬植體於人體的生物相容性(biocompatibility)具很高的評價,其非常適合做為人體的植入物,然而鈦金屬植體之所以有這麼好的生物相容主要是與鈦金屬表面的氧化層有關。一些研究及文獻亦顯示植入生物體內材料表面的孔徑大小和細胞初始的攀附行為、增殖及分化有密切的關係,因此若能有效控制孔徑的大小將會對骨整合會有相當大助益。
本研究以電化學的陰極處理方式使鈦金屬表層形成一層氫化鈦薄膜,再以電化學陽極處理,使表面形成一層奈米多孔性的二氧化鈦(nanoporous-TiO2)結構,並以物理及化學性的分析儀器測試表面之成分、元素、膜厚、孔洞大小及結構是否符合要求,之後將對符合要求的試片在無塵室加以清洗、消毒後,即以這些鈦金屬試片進行細胞培養,經特定的時間分別對細胞的攀附,增殖作不同的測試, 並加以比較不同條件下這些測試的結果。
本研究主要是在探討鈦金屬植體表面經由複合電化學方式製作出不同的氧化層厚度及奈米孔徑大小,並以細胞實驗在不同的氧化層厚度及孔徑大小下的生長情形,此外更進一步探討奈米孔洞的表面與骨整合的癒合機制並與微奈米孔洞進行比較,此結果可對縮短植入於骨內的植體,骨整合癒合時間的機制。
Titanium-based alloys with excellent biocompatibility have been investigated by many researches. It is due to its passive oxide film. The surface characteristics of titanium implant, such as pore sizes/roughness, are related to initial cell behaviors and osseointegration. However, the surface design of dental implant for enhancing the rate and result of osseointegration remains unknown. The purpose of this study is to investigate the effects of the various the titanium oxide thicknesses and pore sizes/roughness on the initial attachment and proliferation of the osteoblast-like cell (MG-63) based on the above investigation, it is believed that optimal pore sizes/roughness will be promoted the osseointegration.
In this study, electrochemistry process was performed as surface treatment of titanium-based implant. Titanium hydride was formed on titanium implant surface after cathode treatment. Nanoporous titanium oxide structure was formed by anodic surface treatment. In order to realize the properties of titanium oxide film, physical and chemical properties of titanium implant with and without surface treatments. In addition, biocompatibility of titanium implant with and without surface treatments was performed by cell cultures. MTT test and cell counting is used to investigate the cell attachment and proliferation.
Contents 1
Table captions 2
Figure captions 3
中文摘要 4
Abstract 5
Chapter 1 Introduction 7
1.1 General Background 7
1.2 Motivation of This Study 8
1.3 Organization of the Thesis 9
Chapter 2 Literature Review 10
2.1 Osseointegration of titanium 10
2.2 Osseointegration of rough surfaces 12
2.3 Contact of boneimplant with and without surface treatment 12
2.4 Higher removal torque values (RTVs) 14
2.5 Impact of the implant surface on clinical implant stability 16
Chapter 3 Experimental Procedures 20
3.1 Titanium implant preparation 20
3.2 Physical and Chemical properties of dental implant with and without treatment 23
3.3 Cell culture 28
3.4 Cells attachment and proliferation observation 29
3.5 Statistic analysis 30
Chapter 4 Results and Discussion 31
A. Properties of Ti and O-Ti plates 31
B. Biocompatiility of Ti and O-Ti 38
Conclusion 41
Reference 43
1.Brånemark PI., Breine U., Adell R. and Hansson BO., “Intraosseous anchorage of dental prostheses. I Experimental studies.”, Scand J Plast Reconstr Surg. 3:81(1969).
2.Schroeder A., Pohler O. and Sutter F., “Gewebsreaktion auf ein Titan-Hohlzylinderim-plantat mit Titan-Spritz schichtoberflache”, Schweiz Monatsschr Zahnheilk., 86:713(1976).
3.Brånemark PI., Hansson BO., Adell R., Breine U., Lindstrom J., Hallen O. and Omann A., “Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period.”, Scand J Plast Reconstr Surg ., 11(suppl):102(1977).
4.Schroeder A., Stich H., Straumann F. and Sutter F., “Uber die Anlagerung von Osteozement an einen belasteten Implantatkorper.”, Schweiz Monatsschr Zahnheilk., 88:1051(1978).
5.Schroeder A., Van der Zypen E., Stich H. and Sutter F., “The reaction of bone, connective tissue and epithelium to endosteal implants with sprayed titanium surface.”, J. Maxillofac Surg., 9:15(1981).
6.Adell R., Lekholm U., Rockler B. and Brånemark PI., “A 15-year study of osseointegrated implants in the treatment of the edentulous jaw.”, Int J Oral Maxillofac Surg., 6:387(1981).
7.Buser D., Weber HP. and Lang NP., “Tissue integration of non-submerged implants 1-year results of a progressive study with 100 ITI hollow-screw and hollow-cylinder implants.”, Clin Oral Impl Res., 1:33(1990).
8.Buser D., Sutter F., Weber HP., Belser U. and Schroeder A., “The ITI dental implant system. Basics, clinical indications and procedures, results.”, In: Hardin J Clark’s Clinical Dentitry, Philadelphia: Lippincott., 5:1-23(1992).
9.Zarb GA. and Schnitt A., “The longitudinal clinical effectiveness of osseointegrated dental implants in anterior partially edentulous patients.”, Int J prosthodont., 6:180(1993).
10.Brunette DM., Kenner GS. and Gould TRL., “Grooved titanium surfaces orient growth and migration of cells from human gingival explants.”, J Dent Res., 62:1045(1983).
11.Chehroudi B., Gould TRL., Brunette DM., “Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo.”, J of Biomedical Materials Research., 24:1203(1990).
12.Martin JY. and Schwartz Z., “Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63).”, J of Biomedical Materials Research., 29:389(1995).
13.Wong M., Eulenberger J. and Schenk R., “Effect of surface topography on the osseointegration of implant materials in trabecular bone.”, J Biomed Mater Res., 29:1567(1995).
14.Schwartz Z. and Martin JY., “Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation.”, J of Biomedical Materials Research., 30:145(1996).
15.Flemming RG., Murphy CJ., Abrams GA., Goodman SL. and Nealey PF., “Effects of synthetic micro- and nano-structured surfaces on cell behavior.”, Biomaterials., 20:573(1999).
16.Deligianni DD. and Katsala N., “Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation, and detachment strength.”, Biomaterials. 22:87(2001).
17.Deligianni DD. and Katsala N., “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption.”, Biomaterials., 22:1241(2001).
18.Steinemenn SG., Eulenberger J., Maeusli PA. and Schroeder A., Adhesion of bone to titanium. In: Christel P. Meunier A. Lee AJC. Biomechanical Performance of Biomaterials. Amsterda Elsevier., 409(1986).
19.Brånemark R. A Biomechanical Study of Osseointegration. (Thesis). Goteborg. Sweden: Goteborg University(1996).
20.Gotfredsen K., Wennerberg A., Johansson C. and Skovgaard LT., “Anchorage of TiO2- blasted, HA-coated, and machined implants: An experimental study with rabbits.”, J of Biomedical Materials Research., 29:1223(1995).
21.Wennerberg A., Albrektsson T., Andersson B. and Krol JJ., “A histomorphometric and removal torque study of screw shaped titanium implants with three different surface topographies.”, Clin Oral Implants Res., 6:24(1995).
22.Wennerberg A., Alkretsson T., Johansson C. and Andersson B., “Experimental study of turned and grit-blasted screw shaped implants with special emphasis on effects of blasting materials and surface topography.”, Biomaterials., 17:15(1996).
23.Wennerberg A., Alberktsson T. and Lausmaa J., “Torque and histomorphometric evaluation of Cp-titanium screw blasted with 25- and 75-µm particles of Al2O3.”, J of Biomedical Materials Research., 30:251(1996).
24.Pillar RM., “Implant stabilization by tissue ingrowth. Proceedings of an International Congress, Brussels. May 1985.”, Excerpta Medica. Amsterdam. 60(1986).
25.Pillar RM., Deporter DA., Watson PA. and Valiquettl N., “Dental implamt design – Effect on bone remodeling.”, J of Biomedical materials Research., 25:467(1991).
26.Wennerberg A., Alberktsson T. and Andersson B., “Bone tissue response to commerically pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int.”, J Oral Maxillofac Implants., 11:38(1996).
27.Brunette DM., “The effects of implant surface topography on the behavior of cells.”, Int J Oral Maxillofac Implants., 3:231(1988).
28.Davies JE., “Mechanisms of endosseous integration.”, Int J of Prosthodontics., 11(5):391(1998).
29.Park JY. and Davies JE., “Red blood cell and platelet interactions with titanium implant surface.”, Clin Oral Impl Res., 11:530(2000).
30.Gemmell CH. and Park JY., Initial blood interaction with endossteal implant Materials. Bone engineering, 2000, Davies JE. em squared inc. Toronto Canada., 108(2000).
31.Pawley JB., Handbook of Biological Confocal Microscopy. Plenum Press, New York, 39(1995).
32.Curtis A and Wilkinson C., “Topographical control of cells.”, Biomaterials, 18:1573(1997).
33.Kasemo B and Lausmaa J., “Material-tissue interfaces: The role of surface properties and processes.”, Environ Health Perspect, 102(Suppl 5):41(1994).
34.McAlarney ME. and Oshiro MA., “Effects of titanium dioxide passive film crystal structure, thickness, and crystallinity on C3 adsorption.”, Int J Oral Maxillofac Implants, 11:73(1996).
35.Cochran D.L, Schenk R.K., Lussi A., Higginbottom F.L. and Buser D., “Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface. A histometric study in the canine mandible.”, Journal of Biomedical Materials Research, 40:1(1998).
36.Hahn H. and Palich W., “Preliminary evaluation of porous metal surfaced titanium for orthopedic implants.”, Journal of Biomedical Materials Research, 4:571(1970).
37.Wennerberg A., Albrektsson T., Ulrich H. and Krol J., “An optical 3D method for topographical description of surgical implants. Journal of Biomedical Engineering”, 14:412(1992).
38.Kirsch A. and Donath K. “Tierexperimentelle Untersuchungen zur Bedeutung der Mikromorphologie von Titanimplantatoberflächen. Fortschritte.”, der Zähnarztlichen Implantologie, 1:35(1984).
39.Davies J.E., “Mechanisms of endosseous integration. International” Journal of Prosthodontics, 11:391(1998).
40.Buser D., Schenk R.K., Steinemann S., Fiorellini J., Fox C. and Stich, H., “Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs.” Journal of Biomedical Materials Research, 25:889(1991a).
41.Wennerberg A., Hallgren C., Johansson C. and Danelli S., “A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses.”, Clinical Oral Implants Research, 9:11(1998).
42.Vercaigne S., Wolke J.G.C., Naert I. and Jansen J.A., “Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral Implants.”, Clinical Oral Implants Research, 9:261(1998).
43.Boyan B.C., Batzer R., Kieswetter K., Liu Y., Cochran D.L., SzmuCkler-Moncler S., Dean D.D. and Schwartz Z., “Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha, 25-(OH)2D3”, Journal of Biomedical Materials Research, 39:77(1998).
44.Bernard J.P., Belser U.C., Szmukler S., Martinet J.P., Attieh A. and Saad P.J., “3-year success rates of Short ITI implants in posterior jaws.”, Medecine Buccale et Ctiirurgie Buccale, 1:11(1995).
45.Kieswetter K., Schwartz Z., Hummert T.W., Cochran D.L, Simpson J., Dean D.D. and Boyan B.D., “Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells.”, Journal of Biomedical Materials Research 32,553(1996) .
46.Gotfredsen K., Wennerberg A., Johansson C., Skovgaard L.T. and Hjerting-Hansen E., “Anchorage of TiO2-blasted, HA-coated and machined implants: An experimental study with rabbits.”, Journal of Biomedical Materials Research, 29:1223(1995).
47.Wennerberg A., Albrektsson T., Andersson B. and Krol J.J., “A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies.”, Clinical Oral Implants Research, 6:24(1995).
48.Wennerberg A., Albrektsson T. and Lausmaa J, “Torque and histomorphometric evaluation of cp-titanium screws blasted with 25- and 75-μm sized particles of Al2O3.”, Journal of Biomedical Materials Research, 30:251(1996).
49.Wennerberg A., Ektessabi A., Albrektsson T., Johansson C. and Andersson B., “A 1-year follow-up of implants of differing surface roughness placed in rabbit bone.”, The International Journal of Oral and Maxillo-facial Implants, 12:486(1997).
50.Klokkevold P.P., Nishimura R.D., Adachi M. and Caputo A., “Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit.”, Clinical Oral Implants Research 6:442(1997).
51.Claes L, Hutzschenreuter P. and Pohler O., “Löse-momente von Corticalisschrauben in Abhängigkeit von Implantationszeit und Oberflächen-beschaffenheit.”, Archiv für orthopädische Unfall- Chirurgie 85:155(1976).
52.Wilke H.J., Claes L and Steinemann S., “The influence of various titanium surfaces on the interface shear strength between implants and bone.”, Advances of Biomaterials, 9:309(1990).
53.Gotfredsen K., Nimb L., Hjorting-Hansen E., Jensen J.S. and Holmen A., “Histomorphometric and removal torque analysis for TiO2 blasted titanium implants.”, Clinical Oral Implants Research, 3:77(1992).
54.Pebé P., Barbot R., Trinidad J., Pesquera A., Lucente, J., Nishimura R., and Nasr H., “Countertorque testing and histomorphometric analysis of various Implant surfaces in canines: a pilot study. “, Implant Dentistry, 6:259(1997).
55.Buser D., Nydegger T., Hirt H.P., Cochran D.L. and Nolte L.P., “Removal torque values of titanium implants in the maxilla of miniature pigs.”, The International Journal of Oral and Maxillofacial Implants, 13:611(1998a).
56.Buser D., Nydegger T., Oxiand T., Cochran D.L., Schenk R.K., Hirt H.P., Snetivy D. and Nolte L.P., “Influence of surface characteristics on the interface shear strength between titanium implants and bone., A biomechanical study in the maxilla of miniature pigs.”, Journal of Biomedical Materials Research, 45:75(1999a).
57.Carr A.B., Beals D.W. and Larsen, P.E., “Reversetorque failure of screw-shaped implants in baboons after 6 months of healing.”, The International Journal of Oral and Maxillofacial Implants, 12:598(1997).
58.Adell R., Lekholm U., Rockier B. and Brånemark, P.I., “A 15-year study of osseointegrated implants in the treatment of the edentulous jaw.”, International Journal of Oral Surgery, 10:387(1981).
59.Zarb G.A. and Schmitt A. “The longitudinal clinical effectiveness of osseointegrated implants. The Toronto study. Part I: Surgical results.”, Journal of Prosthetic Dentistry, 63:451(1990)
60.Babbush C.A., Kent J.N. and Misiek D.J., “Titanium plasma-sprayed (TPS) screw implants for the re construction of the edentulous mandible.”, Journal of Oral and Maxillofacial Surgery, 44:274(1986).
61.Versteegh P.A.M., van Beek G.J., Slagter A.P. and Ottervanger, J.P., “Clinical evaluation of mandibular overdentures supported by multiple-bar fabrication: A follow-up study of two implant systems.”, International Journal of Oral and Maxillofacial Implants, 10:595(1995).
62.Bergendal T. and Engquist B., “Implant-supported overdentures: A longitudinal prospective study.”, The International Journal of Oral and Maxillofacial Implants, 13:253(1998).
63.Ericsson I., Randow K., Nilner K. and Petersson A., “Some clinical and radiographical features of submerged and non-submerged titanium implants. A 5-year follow-up study, Clinical Oral Implants Research, 8:422(1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔