跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐瑋宏
研究生(外文):Wei-Hung Hsu
論文名稱:架構於混沌式頻率調變之保密通信系統研製
論文名稱(外文):The Implementation of Chaos-Based FM Secure Communication System
指導教授:周錫強周錫強引用關係
指導教授(外文):Hsi-Chiang Chou
學位類別:碩士
校院名稱:東南技術學院
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:129
中文關鍵詞:混沌同步保密系統
外文關鍵詞:ChaosSynchronousSecure System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
十九世紀以來,線性理論支配著科學領域的發展,然而以現代科學的觀點來看,它只是非線性理論的一個特例。混沌可說是非線性理論發展過程中最具研究價值的部份,因此近年來各個研究領域均對其感到興趣。這當中包括了物理、化學、社會學、經濟學及工程等,其中在工程方面又以應用於保密通訊系統上的研究最為科學家所廣泛探討。然而在已發表的文獻中觀察到以混沌為基礎的保密通訊系統多為學術性探討或為不實際之系統,以工程角度而言,實用性不高。
本論文嘗試研製一實用性之混沌保密通訊系統,在構思上將訊息隱藏於混沌信號內,繼而應用頻率調變完成訊號傳送,另於訊號還原則是透過同步解調及混沌遮罩剔除兩個過程完成;因此在實體電路上發射端分別由混沌遮罩產生器、載波產生器、混沌-基頻介面電路、調變電路構成;而在接收端則為混沌同步電路、本地振盪電路、混沌-基頻介面電路、解調電路構成;為減少實作上的重複錯誤,我們將以Matlab 程式模擬混沌行為,以確定混沌遮罩訊號的產生,並以Spice軟體模擬整體電路行為。經由此研究,相信對於提升混沌理論於保密通信上有非常大的助益,在實際應用價值亦更具效用。
The development of the science has been dominated by the linear theory from the nineteenth century. However, from the advanced science point of view, the linear theory is a special case of the nonlinear theory. Chaos is a part of the nonlinear theory with the most use in research. Therefore, in recent years many researches of different territories have involved in the chaos, such as physics, chemistry, sociology, economics and engineering etc. Among them, the chaotic phenomena applied in secure communication of engineering have been extensively discussed. However, in those published paper secure communication discussed which base on chaotic phenomena are almost paper research or unpractical circuits.
The implementation of a practical chaos-base secure communication system is the purpose of this thesis. In conception, our approach to achieve secure communication uses a chaotic signal to mask the information signal through interface circuit of chaos-basic frequency, this masking signal through frequency modulator from transmitter to receiver. The basic building block for our approach is constructed by four parts in the transmitter and receiver respectively. A chaos-mask generator, carrier generator, interface circuit of chaos-basic frequency and modulator are included in transmitter; and receiver is constituted by chaotic signal synchronization circuit, local oscillator, interface circuit of chaos-basic frequency and modulator. It is believed our approach can help those people who desire to produce a more practice chaotic communication system.
中文摘要 i
英文摘要 iii
致 謝 v
目 錄 vi
表目錄 x
圖目錄 xi

第一章 緒論 1
1.1 研究背景與動機 1
1.1.1 歷史回顧 1
1.1.2 電子元件與電路應用上之探討 3
1.2 研究動機 6
1.2.1 混沌式保密通訊系統之概述 6
1.2.2 問題描述 7
1.2.3 解決方案 7
1.3 論文架構 8
第二章 混沌的特性與應用 10
2.1 混沌概述 10
2.1.1 線性與非線性現象 12
2.2 混沌的特性 13
2.2.1 蝴蝶效應 17
2.2.2 邏輯斯諦映射 20
2.2.3 菲根鮑姆常數 27
2.3 驗證混沌的方法 29
2.4 混沌的應用 35
第三章 驗證混沌現象之軟體開發 37
3.1 模擬演算法說明 37
3.2 實際電路與系統驗證 38
3.2.1 傳統式蔡氏電路 39
3.2.2 勞倫茲系統 45
3.2.3 考畢子震盪器 51
3.2.3 羅斯勒系統 57
3.3 模擬結果分析 63
第四章 硬體構建及理論探討 64
4.1 系統架構 64
4.2 電路結構及理論 66
4.2.1 發射端電路結構及理論 66
4.2.2 接收端電路結構及理論 75
第五章 模擬結果與分析 83
5.1 混沌產生器現象之模擬結果與分析 83
5.2 電路模擬結果與分析 89
5.2.1 IsSpice模擬軟體及模擬流程 89
5.2.2 發射端電路模擬結果與分析 93
5.2.3 接收端電路模擬結果與分析 96
第六章 實體電路研製與波型量測結果 100
6.1 Protel DXP佈線軟體介紹 100
6.2 量測儀器之簡介 101
6.3 實體電路製作 102
6.3.1 發射端實體電路 104
6.3.2 接收端實體電路 105
6.4 實驗量測結果與分析 107
6.4.1 發射端量測結果與分析 107
6.4.2 接收端量測結果與分析 111
第七章 結論與未來發展方向 114
參考文獻 115
附 錄 122
作者生平簡介 129
[1] Devaney, R. L., A First Course in Chaotic Dynamical Systems, New York,(1992).
[2] Abraham, R. H. and shaw, C. D., Dynamics the Geometry of Behavior, New York, (1992).
[3] Mandelbrot, B., The Fractal Geometry of Nature, Freeman, San Francisco,(1982).
[4] Strogatz, S. H., Nonlinear Dynamics and Chaos, New York, (1994).
[5] Pritchard, J., The Chaos Cookbook, Sylvester North, Sunderland, (1996).
[6] Kadanoff, L. P., From Order to Chaos, USA Chicago, (1993).
[7] Matsumoto, T., Chua, L. O., and Komuro, M. “The Double Scroll,” IEEE Trans. CAS-32, 798(1985).
[8] Azzouz, A., Duhr, R., and Hasler, M. “Transition to Chaos in a Nonlinear Circuit by a Sinusoidal Voltage Source,” IEEE Trans. CAS-30, 913(1983).
[9] Chua, L. O., Komuro, M. And Matsumoto, T., “The Double Scroll Family,” IEEE Trans. CAS-33, 1073(1986).
[10] Hasler, M. J., “Electrical Circuits with Chaotic Behavior,” Proc. IEEE, 75(8), 1009(1987).
[11] Matsumoto, T., “Chaos in Electronic Circuits,” Proc. IEEE, 75(8), 1033 (1987).
[12] Bernstein, G. M., Lieberman, M. A., and Lichtenberg, A. J., “Nonlinear Dynamics of a Digital Phase Locked Loop,” IEEE Trans. C-37, 1062 (1989).
[13] Chu, Y. H., Chou, J. H., and Chang, S., “Chaos from Third-order Phase-Locked Loops with a Slowly Varying Parameter,” IEEE Trans. Circuits Syst. 37(9), 1104(1990).
[14] Endo, T., and Chou, L. T., “Chaos from Two-Coupled Phase-Locked Loops,” IEEE Trans. Circuits Syst. 37(9), 1183(1990).
[15] Kilias, T., Kelber, K., MÖgel, A., and Schwarz, W., “Electronic Chaos Generators — Design and Application,” Int. J. Electronics, 79(6), 737(1995).
[16] Lynch, S., Steelf, A. L., and Hoad, J. E., “Stability Analysis of Nonlinear Optical Resonators,” Chaos Solitons & Fractals, 9(6), 935(1998).
[17] Ashwin, P., “Boundary of Two Frequency Behavior in a System of ThreeWeakly Coupled Electronic Oscillators ,” Chaos Solitons & Fractals, 9(8), 1279(1998).
[18] Linsay, P. L., “Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillactor,” Physical Review Letters, 47(9), 1349(1981).
[19] Testa, J., Pérez, J., and Jeffries, C., “Evidence for Universal Chaotic Behavior of a Driven Nonlinear Oscillator,” Physical Review Letters, 48(11), 714(1982).
[20] Zhong, G. Q., and Ayron, F., “Periodicity and Chaos in Chua’s Circuit,” IEEE Trans. CAS-32, 501(1985).
[21] Wu, S., “Chua’s Circuit Family,” Proc. IEEE, 75(8), 1022(1987).
[22] Murali, K., and Lakshmanan, M., “Chaotic Dynamics of the Driven Chua’-s Circuit,” IEEE Trans. Circuit Syst., 40(1), 836(1993).
[23] Murali, K., Lakashmanan, M., and Chua, L. O., “The Simplest Dissipative Nonautonomous Chaotic Circuit,” IEEE Trans. CAS-41, 462(1994).
[24] Salam, F. M. A., and Sastry, S. S., “Dynamics of the Forced Josephson Junction Circuit: The Regions of Chaos,” IEEE Trans. CAS-32, 784(1985).
[25] Angel, R. V., Huertas J. L., and Rueda, A., Belen, P. V., and Chua, L. O.,“Chaos from Switched-Capacitor Circuits: Discrete Maps,” Proc IEEE, 75(8),1090(1987).
[26] Endo, T., and Chua, L. O., “Chaos from Phase-Locked Loops,” IEEE Trans. CAS-35, 987(1988).
[27] Jefferies, D. J., Johnstone, G. G., and Deane, J. H. B., “An Experimental Search for the Conditions for the Conditions for the Existence of Chaotic States in Class C Bipolar Transistor RF Amplifiers,” Int. J. Electronics, 71(4), 661(1991).
[28] Chou, J. H., Twu, S. H., and Chang, S., “Chaos and Bifurcation of a Nonlinear Oscillator with Tunnel Diode,” J. Cont. Syst. Tech., 1(1), 27(1993).
[29] Kenndy, M. P., “Chaos in Colpitts Oscillator,” IEEE Trans. Circuits Syst.,41(11), 771(1994).
[30] Muhammad, T. A., and Mahmud, K. A., “Chaos in an Autonomous Active-R Circuit,” IEEE Trans. Circuits Syst., 42(1), 1(1995).
[31] Jonathan, D., Elizabeth, B. and Zoya, B. P., “Nonlinear Time-Domain Analysis of Injectio-Locked Microwave MESFET Oscillators,” IEEE Trans. Microwave Theory Tech., 45(7), 1050(1997).
[32] N. J. Corron, and D. Hahs, “A New Approach to Communication Using Chaotic Signals,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 373-382, 1997.
[33] A. Oksasoglu, and T. Akgul, “A Linear Inverse System Approach in the Context of Chaotic Communication,” IEEE Trans. Circuits Syst. I, vol. 45, pp. 75-79, 1998.
[34] H. Huijbert, H. Nijmeijer, and R. Willems, “System Identification in Communication with Chaotic System,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 800-808, 2000.
[35] A. Leuciue, “Information Transmission Using Chaotic Discrete-Time Filter,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 82-88, 2000.
[36] A. Abel, W. Schwarz, and M. Gotz “Application of Noise Reduction to Chaotic Communication,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 1726-1732, 2000.
[37] Z. Jako, and G. Kis, “Application of Noise Reduction to Chaotic Communication,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 1720-1725, 2000.
[38] T. L. Carroll, “Noise-Robust Synchronized Chaotic Communication,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 1519-1522, 2001.
[39] C. Williams, “Chaotic Communication Over Radio Channels,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 1394-1404, 2001.
[40] M. Boutaye, M. Darouach, and Rafaralahy, “Generalized State-Space Observers for Chaotic Synchronization and Secure Communication,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 345-348, 2002.
[41] T. L. Carroll, “Using the Cyclostationary Properties of Chaotic Signals for Communication,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 357-362, 2002.
[42] Z. P. Jiang, “A note on Chaotic Secure Communication,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 92-96, 2002.
[43] H. Guojie, F. Zhengjin, and M. Ruiling, “Chosen Ciphertext Attack on Chaos Communication Based on Chaotic Synchronization,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 275-279, 2003.
[44] Y. Y. Chen, “Masking Messages in chaos,” Europhys. Lett., vol. 34, no.4, pp.245-250, 1996.
[45] R. Rovatti, G. Setti, and G. Mazzini, “Chaotic Complex Spreading for Asynchronous DS CDMA - PART I: System modeling and Results,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 937-947, 1997.
[46] G. Mazzini, G. Setti, and R. Rovatti, “Chaotic Complex Spreading for Asynchronous DS CDMA - PART II: Some theoretical Performance bounds,” IEEE Trans. Circuits Syst. I, vol. 45, pp. 496-506, 1998.
[47] C. Ling, and S. Li, “Chaotic Spreading Sequences using periodic orbits of chaos for CDMA,” Electronics Letters, vol. 35, pp. 545-546, 1999.
[48] K. Umeno, and K. Kitayama, “Spreading Sequences with Multiple Access Performance Better Than Random Sequences,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 394-397, 2000.
[49] K. Murali, H. Leung, and H. Yu, “Design of Noncoherent Receiver for Analog Spread-Spectrum Communication Based on Chaotic Masking,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 432-441, 2003.
[50] C. M. Francis C. M. Lau, and K. T. Chi, “Performance of Chaos-Based Communication Systems Under the Influence of Coexisting Conventional Spread-Spectrum Systems,” IEEE Trans. Circuits Syst. I, vol. 51, pp. 1475-1477, 2004.
[51] 吳炳飛,「混沌系統」,國立交通大學演講稿。
[52] Devaney, R. L., An Introduction to Chaotic Dynamical System, New York,(1992).
[53] Parker, T. H., and Chou, L. O., Practical Numerical Algorithms for Chaotic Systems, New York, (1989).
[54] 劉秉正,非線性動力學與混沌基礎,徐式基金會,1998。
[55] 呂可誠,「淺說混沌」,大學物理,第十八卷第十期,1999。
[56] 吳振奎,「混沌平話」,數學通訊,第二、三、四期,1999。
[57] Hunt, E. R., “Stabilizing High-Period Orbits in a Chaotic System: The Diode Resonator,” Physical Review Letters, 67(15), 1953(1991).
[58] Ogorzaíek, M. J., “Taming Chaos: Part II—Control,” IEEE Trans. Circuits Syst., 40(10), 700(1993).
[59] Chen, G., “Controlling Chua’s Global Unfolding Circuit Family,” IEEE Trans. Circuits Syst., 40(11), 829(1993).
[60] Johnston, G. A., Hunt, E. R., “Derivative Control of the Steady State in Chua’s Circuit Driven in the Chaotic Region,” IEEE Trans. Circuits Syst., 40(11), 833(1993).
[61] Chen, G., Dong, X., “On Feedback Control of Chaotic Continuous-Time Systems,” IEEE Trans Circuits Syst., 40(9), 591(1993).
[62] Saito, T., and Mitsubori, J., “Control of Chaos from a Piecewise Linear Hysteresis Circuit,” IEEE Trans. Circuits Syst., 42(3), 168(1995).
[63] Endo, T., and Chua, L. O., “Synchronization of Chaos in Phase-Locked Loops,” IEEE Trans. Circuits Syst., 38(12), 1580(1991).
[64] Carroll, T. L., and Pecora, L. M., “Synchronization Chaotic Circuits,” IEEE Trans. Circuits Syst., 38(4), 453(1991).
[65] Angeli, A. D., Genisio, R. And Tesi, A., “Dead-Beat Chaos Synchronization in Discrete-Time Systems,” IEEE Trans. Circuits Syst., 42(1), 54(1995).
[66] Chua, L. O., Yang, T., Zhong, G. Q. And Wu C. W., “Synchronization of Chua’s Circuits with Time-Varying Channels and Parameters,” IEEE Trans. Circuits Syst., 43(10), 862(1996).
[67] Arena, P., Baglio L., Fortuna, L., and Manganaro, G., “Chua’s Circuit Can Be Generated By CNN Cells,” IEEE Trans. Circuits Syst., 42(2), 123(1995).
[68] 吳駖,MATLAB 6.X與基礎自動控制,松崗,台北,2002。
[69] 盧明智、黃敏祥,OP Amp應用+實驗模擬,全華科技圖書,台北,1999。
[70] 王志湖,電子學實驗(下),滄海書局,台中,2004。
[71] 蔡崇洲、羅光耀,通訊系統電子電路實習,全威圖書有限公司,台北,2005。
[72] Corron, Ned J., and Hahs, Daniel W., “A New Approach to Communications Using Chaotic Signals,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 378-379, 1997.
[73] 林志一、曾龍圖,IsSpice Version 8交談式電路模擬分析與應用,全華科技圖書,台北,2001。
[74] 張義和,Protel DXP電腦輔助電路設計,全華科技圖書,台北,2004。
[75] 張義和、陳敵北、周金聖,例說DXP 2004,新文京開發出版,台北,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊