(3.236.222.124) 您好!臺灣時間:2021/05/14 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:趙珮君
研究生(外文):Pei-Chun Chao
論文名稱:探討具醚基連結基之誘電性及反誘電性液晶材料之液晶相及其光電性質
論文名稱(外文):Study on the Mesophases and Electro-optical Properties of Ferroelectric and Antiferroelectric Liquid Crystals Containing Methyleneoxy Linking Group
指導教授:吳勛隆
指導教授(外文):Shune-Long Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:104
中文關鍵詞:醚基連結基半氟化旋光性液晶材料誘電性液晶反誘電性液晶
外文關鍵詞:semi-fluorinated chiral liquid crystalferroelectricity and antiferroelectricityMethyleneoxy linking group
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為以(S)-propylene oxide 為起始物並與半氟化與未氟化醇類在鹼性的條件下反應合成三系列新型旋光性液晶材料以探討(1) 硬核連結基由酯基改為醚基觀察是否有其他液晶相的生成,(2) 改變液晶分子旋光末端烷鏈氟化的程度觀察其液晶相的變化 (3) 將硬核連結基上的氫改為氘對其物理性質的影響。
藉由偏光紋理圖及DSC的鑑定可分別得知液晶相及相轉移溫度的變化,經由電流轉換行為及介電性質的量測可進一步鑑定誘電性及反誘電性液晶相的存在。
在第一系列(m=8-11)中出現SmA*、SmC*、SmCγ* 的液晶相,而在非旋光末端烷鏈碳數較長的材料(m=12)則只有SmA*-SmC*的液晶相。第二系列(m=8,10)中出現了SmC*-SmCA*- SmX* (SmI* or SmF*)的液晶相轉移,而在第二系列(m=9,11,12)中則只有SmC*相的生成。第三系列(m=8-12)與第一系列(m=8-11)比較可以發現所有材料均抑制了SmCγ*相的生成而生成SmA*和SmC*液晶相。
實驗結果顯示: 含半氟化旋光中心會抑制SmA*的生成,但有利於SmCA*的生成。將硬核連結基上的氫改成氘時,則會增加SmA*相及SmC*相溫度範圍。當硬核連結基由酯基改為醚基時 (1)含未氟化旋光中心之液晶分子其SmA*相及SmC*相溫度範圍均變窄 (2)含半氟化旋光中心之液晶分子其SmA*相消失且SmCA*相溫度範圍變窄但SmC*相溫度範圍變寬。
材料的物理性質皆於SmC*、SmCγ*、SmCA*及 SmX* (SmI* or SmF*)的液晶相下量測。化合物I(m=8-12), II(m=8-12)和 III(m=8-12)自發性極化值最大值各分別介於17.7-30.9nC/cm2, 80-120.4nC/cm2和8-20nC/cm2之間,顯示含半氟化旋光中心之液晶分子有較大的自發性極化值。而當硬核連結基上的氫被氘取代則會降低自發性極化值。比較I(m=8-12), PPmPPB(m=8-12) 和II(m=8-12), MPFPECPmBC(m=8-12)可以看出當硬核連結基由酯基改為醚基時會增加自發性極化值。化合物I(m=8-12), II(m=8-12)和 III(m=8-12)傾斜角的最大值範圍各分別介於18°-22°, 23°-34.5°和 21°-27.5°之間,顯示含半氟化旋光中心之液晶分子有較大的傾斜角,當硬核連結基上的氫被氘取代會增加傾斜角。比較I(m=8-12), PPmPPB(m=8-12) 和II(m=8-12), MPFPECPmBC(m=8-12)可以看出當硬核連結基由酯基改為醚基時對於傾斜角不會有太大的影響。
當液晶分子之連結基為-COO-或-CD2O-時,皆會抑制SmCγ*相的生成。而在第二系列中可以看出當液晶分子含有半氟化旋光烷鏈及醚基連結基時,會有利於SmCA*相的生成並抑制SmA*像的生成。當液晶分子含有半氟化旋光末端烷鏈,會明顯的提升自發性極化值。
The purpose of this research work was an attempt to elucidate the structure-property correlation in the chiral smectic liquid crystals. Optically active (S)-1-propyloxy-2-propanol and (S)-1-(2,2,3,3,3-pentafluoropropyloxy)-2-propanol were designed and prepared by the treatment of (S)-propylene oxide with corresponding alcohols under basic condition. Three homologous series of chiral compounds derived from these alcohols were synthesized, and their mesophases and electro-optical properties were investigated. The effects of changing (1) the linking group in the core structure of the molecule changing from carboxylate group to methyleneoxy group, (2) the chiral group varied from non-fluorinated to semi-fluorinated alkoxy chain length and, (3) the linking groups modified from -CH2O- to deuterated –CD2O- core structure of the molecule were compared and discussed.
The mesomorphic phases and their corresponding transition temperatures were primarily characterized by the microscopic textures and DSC thermograms, and the ferroelectric and antiferroelectric phases were further identified by the measurements of electric switching behavior and dielectric constant ε'.
Compounds I(m=8-11) exhibited the SmA*, SmC* and SmCγ* phases, while compound (m=12) with longer alkyl chain exhibited the SmA*-SmC* phases. Compounds II(m=8,10) with even number of alkyl chain length displayed ferroelectric SmC*, antiferroelectric SmCA* and ferroelectric SmX* (SmI* or SmF*) phases, and compounds II(m=9,11,12) with odd number of alkyl chain length displayed exclusively SmC* phase. It is interesting to found that the deuterated compounds III(m=8-12) suppressed the formation of SmCγ* and resulted in the formation of SmA* and SmC* phases as compared to the non-deuterated compounds I(m=8-11). These results demonstrated that the semi-fluorinated compounds II(m=8-12) facilitate the formation of antiferroelectric phase, and suppressed the formation of SmA* phase. When the linking group changes from -CH2O- to deuterated –CD2O- core structure of the molecules, the temperature range of the SmA* phase and the SmC* phase increase. Comparing structurally similar non-fluorinated compounds PPmPPB(m=8-12) to I(m=8-12), it can be found that when the linking group changes from –COO- to -CH2O-, the temperature range of the SmA* phase and the SmC* phase decrease. Comparing structurally similar compounds II(m=8-12) to MPFPECPmBC(m=8-12), it can be found that compounds with -CH2O- linking group, suppresses the formation of SmA* phase and decreases the temperature range of the SmCA* phase, but increases the temperature range of the SmC* phase.
The physical properties of the chiral compounds in ferroelectric SmC*, SmCγ*, SmX* (SmI* or SmF*) and antiferroelectric SmCA* phases were also measured. The maximum magnitudes of the spontaneous polarization for compounds I(m=8-12), II(m=8-12) and III(m=8-12) are approximately in a range of 17.7-30.9nC/cm2, 80-120.4nC/cm2 and 8-20nC/cm2, respectively, demonstrating that the compounds with semi-fluorinated chiral group have larger Ps values. When the linking group of the chiral compounds changes from -CH2O- to deuterated –CD2O- in the core of the molecule, the maximum Ps values slightly decreases. Comparing I(m=8-12) to PPmPPB(m=8-12), and II(m=8-12) to MPFPECPmBC(m=8-12) indicate that the maximum Ps values are greater in the structurally similar compounds with methyleneoxy linking group than carboxylate group in the core of the molecules.
The maximum apparent tilt angles of series I(m=8-12), II(m=8-12) and III(m=8-12) are approximately in a range of 18°-22°, 23°-34.5° and 21°-27.5°. The results showed that the compounds with semi-fluorinated chiral group have larger apparent tilt angles. When the linking group changes from -CH2O- to deuterated –CD2O- in the core structure of the molecule, the optical tilt angles increase. Comparing I(m=8-12) to PPmPPB(m=8-12), and II(m=8-12) to MPFPECPmBC(m=8-12), it can be found that there has no any signification correlation of the maximum apparent tilt angles.
In conclusion, the chiral compounds with -COO- or -CD2O- linking group on the main core structure of the molecule suppress the formation of the SmCγ* phase. And when the chiral compounds with –CH2O- linking group on the main core structure of the molecule having semi-fluorinated alkyl chain in chiral tail facilitate the formation of SmCA* phase but suppress the formation of the SmA* phase. Regardless of the compounds with -COO- or -CH2O- linking group on the main core structure of the molecule, the results show that the compounds with semi-fluorinated alkyl chain in chiral tail largely enhance the maximum Ps value.
ENGLISH ABSTRACT III
中文摘要 VI
ACKNOWLEDGEMENTS VIII
TABLE OF CONTENTS IX
LIST OF SCHEME XV
LIST OF TABLES XIV
LIST OF FIGURES XVI
CHAPTER 1 INTRODUCTION 1
1.1. Overview 1
1.2. Chiral smectic phases 3
1.2.1. Chiral smectic A phase 3
1.2.2. Chiral smectic C phase (ferroelectric phase) 4
1.2.3. Chiral smectic Cγ phase (ferrielectric phase) 8
1.2.4. Antiferroelectric (SmCA*) phase 11
1.2.4.1. Antiferroelectric liquid crystal materials 11
1.2.4.2. The structure of antiferroelectric phase 13
1.3. Motivation of study 16
CHAPTER 2
EXPERIMENTAL 20
2.1. Preparation of Materials 20
2.1.1. Synthesis of 4-(4’-alkoxyphenyl)benzoic acid, I-1 22
2.1.2. Synthesis of 4-(4’-alkoxyphenyl)benzyl alcohols, I-2 22
2.1.3. Synthesis of 4-(4’-alkoxyphenyl)benzyl-d2 alcohols, III-2 23
2.1.4. Synthesis of 4-methoxycarbonyloxybenzoic acid, I-3 23
2.1.5. Synthesis of (S)-1-propoxy-2-propanol, I-4 23
2.1.6. Synthesis of (S)-1-(2,2,3,3,3-pentafluoropropyloxy)-2-propanol, II-4 24
2.1.7. Synthesis of (R)-1-propyloxy-2-propyl 4-[(methoxycarbonyl)oxy]benzoate I-5 24
2.1.8. Synthesis of (R)-1-(2,2,3,3,3-pentafluoropropyloxy)-2-propyl 4-(methoxycarbonyloxy]benzoate, II-5 25
2.1.9. Synthesis of (R)-1-propyloxy-2-propyl 4-hydroxybenzoate, I-6 25
2.1.10. Synthesis of (R)-1-(2,2,3,3,3-pentafluoropropyloxy)-2-propyl 4-hydroxybenzoate, II-6 26
2.1.11. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl ether, I(m=8) 27
2.1.12. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl ether, I(m=9) 27
2.1.13. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl ether, I(m=10) 28
2.1.14. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl ether, I(m=11) 28
2.1.15. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl ether, I(m=12) 29
2.1.16. Synthesis of (R)-4-[1(2,2,3,3,3-pentafluoropropyloxy)2-propyloxycarbonyl]phenyl 4’-alkoxybipheny-4-methylene ether, II(m=8) 29
2.1.17. Synthesis of (R)-4-[1(2,2,3,3,3-pentafluoropropyloxy)2-propyloxycarbonyl]phenyl 4’-alkoxybipheny-4-methylene ether, II(m=9) 30
2.1.18. Synthesis of (R)-4-[1(2,2,3,3,3-pentafluoropropyloxy)2-propyloxycarbonyl]phenyl 4’-alkoxybipheny-4-methylene ether, II(m=10) 30
2.1.19. Synthesis of (R)-4-[1(2,2,3,3,3-pentafluoropropyloxy)2-propyloxycarbonyl]phenyl 4’-alkoxybipheny-4-methylene ether, II(m=11) 31
2.1.20. Synthesis of (R)-4-[1(2,2,3,3,3-pentafluoropropyloxy)2-propyloxycarbonyl]phenyl 4’-alkoxybipheny-4-methylene ether, II(m=12) 31
2.1.21. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl-d2 ether III(m=8) 32
2.1.22. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl-d2 ether III(m=9) 32
2.1.23. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl-d2 ether III(m=10) 33
2.1.24. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl-d2 ether III(m=11) 33
2.1.25. Synthesis of (R)-4-[1-propyloxy-2-propyloxycarbony]phenyl 4’-(4-alkoxyphenyl)benzyl-d2 ether III(m=12) 34
2.2. Physical properties 34
2.2.1. Chemical structure identification 34
2.2.2. Mesophase identification 34
2.2.3. Measurement of switching behavior 35
2.2.4. Measurement of spontaneous polarization 35
2.2.5. Dielectric constant measurement 37
2.2.6. Optical tilt angle 37
CHAPTER 3
RESULTS AND DISSCUSSION 40
3.1. Chemical structure identifications. 40
3.2. The effect of peripheral chain length on the mesomorphic properties of compounds I(m=8-12) 40
3.2.1. Mesomorphic phase studies for the compounds I(m=8-12) 40
3.2.2. Differential scanning calorimetric (DSC) studies for the compounds I(m=8-12) 41
3.2.3. Switching current behavior studies for the compounds I(m=8-12) 42
3.2.4. Dielectric property measurements for the compounds I(m=8-12) 47
3.2.5. Spontaneous polarization (Ps) measurements for the compounds I(m=8-12) 47
3.2.6. The optical tilt angle (θ) measurements for the compounds I(m=8-12) 48
3.3. The effect of peripheral chain length on the mesomorphic properties of compounds II(m=8-12) 51
3.3.1. Mesomorphic phase studies for the compounds II(m=8-12) 51
3.3.2. Differential scanning calorimetric (DSC) studies for the compounds II(m=8-12) 51
3.3.3. Switching current behavior studies for the compounds II(m=8-12) 52
3.3.4. Dielectric property measurements for the compounds II(m=8-12) 56
3.3.5. Spontaneous polarization (Ps) measurements for the compounds II(m=8-12) 56
3.3.6. The optical tilt angle (θ) measurements for the compounds II(m=8-12) 57
3.4. The effect of peripheral chain length on the mesomorphic properties of compounds III(m=8-12) 61
3.4.1. Mesomorphic phase studies for the compounds III(m=8-12) 61
3.4.2. Differential scanning calorimetric (DSC) studies for the compounds III(m=8-12) 61
3.4.3. Switching current behavior studies for the compounds III(m=8-12) 62
3.4.4. Dielectric property measurements for the compounds III(m=8-12) 67
3.4.5. Spontaneous polarization (Ps) measurements for the compounds III(m=8-12) 67
3.4.6. The optical tilt angle (θ) measurements for the compounds III(m=8-12) 68
3.5. Comparison of mesomorphic property, spontaneous polarization, and tilt angle for the compounds I(m=8-12), II(m=8-12), III(m=8-12), PPmPPB(m=8-12) and MPFPECPmBC(m=8-12) 71
3.5.1. Mesomorphic properties 71
3.5.2. Spontaneous polarization (Ps) 73
3.5.3. The optical tilt angle (θ) 74
CHAPTER 4
CONCLUSIONS 75
REFERENCES 77
APPENDIX 82
[1]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill. Handbook of Liquid Crystals, 2(A), (1998).
[2]I. Dierking, Textures of Liquid Crystals. (Wiley-VCH) (2003).
[3]R.B. Meyer, L. Liebert, L. Strzelecki, P. Keller. J. Phys. Lett., 36, L69 (1975).
[4]A.D.L. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. appl. Phys., 27, L729 (1988).
[5]A.D.L. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, K. Terashima, K. Furukawa, A. Kishi. Jpn. J. appl. Phys., 28, L1261 (1989).
[6]E. Gorecka, A.D.L. Chanani, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. Appl. Phys., 29, 131 (1990).
[7]J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel. J. Am. Chem. Soc., 111, 8119 (1989).
[8]L.J. Yu, H. Lee, C.S. Bak, M.M. Labes. Phys. Rev. Lett., 36, 388 (1976).
[9]N.A. Clark, S.T. Lagerwall. Appl. Phys. Lett., 36, 899 (1980).
[10]M. Yamawaki, Y. Yamada, N. Yamamoto, K. Mori, H. Hayashi, Y. Suzuki, Y.S. Negi, T. Hagiwara, I. Kawamura, H. Orihara, Y. Ishibashi. Jpn. Display '89, 26 (1989).
[11]J. Johno, A.D.L. Chandani, J. Lee, Y. Ouchi, H. Takezoe, A. Fukuda, K. Ioth, T. Kitazume. Proc. Jpn. Display, 22 (1989).
[12]S. Garoff, R.B. Meyer. Phys. Rev. Lett., 38, 848 (1977).
[13]S. Garoff, R.B. Meyer. Phys. Rev. A, 19, 338 (1979).
[14]R.B. Meyer, L. Liebert, L. Strzelecki, P. Keller. J. Phys. (Paris) Lett., 36, L69 (1998).
[15]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill., Handbook of Liquid Crystals, 2(A), 127-129 (1998).
[16]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill., Handbook of Liquid Crystals, 2(A), 118-119 (1998).
[17]M. Fukui, H. Orihara, Y. Yamada, N. Yamamoto, Y. Ishibahsi., Jpn. J. Appl. Phys., 28, 849 (1989).
[18]H. Takezoe, J. Lee, Y. Ouchi, A. Fukuda., Mol. Cryst. Liq. Cryst., 202, 85 (1991).
[19]H. Takezoe, J. Lee, E. Gorecka, A.D.L. Chandani, Y. Ouchi, K. Terashima, K. Furukawa., Ferroelectrics, 31, 1435 (1992).
[20]T. Isozaki, I. Fujikawa, H. Takezoe, K. Furukawa, T. Hagiwara, Y. Suzuki, I. Kawamura., Jpn. J. Appl. Phys., 28, 849 (1989).
[21]S. Inui, T. Suzuki, N. Iimura, H. Iwane, H. Nohira. Ferroelectrics, 148, 79, (1993).
[22]This compound had already been reported as an FLC by T. Inukai, K. Furukawa, K. Terashima, S. Saitoh, M. Isogai, T. Kitamura, A. Mukoh at the 11th Japanese Liquid Crystal Conference (Kanazawa, 1985). See its Abstract 2N22 on p.172 (in Japanese).
[23]N. Hiji, A.D.L. Chandani, S. Nishiyama, Y. Ouchi, H. Takezoe, A. Fukuda. Ferroelectrics, 85, 99 (1988).
[24]K. Furukawa, K. Terashima, M. Ichihashi, S. Saitoh, K. Miyazawa, T. Inukai. Ferroelectrics, 85, 451 (1988).
[25]H.S. Kitzerow, C. Bahr. Chirality in Liquid Crystals, p.251 reference therein (2001). (Springer)
[26]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill. Handbook of Liquid Crystals, 2(B), 684-688 (1998). (Wiley-VCH)
[27]A.D.L. Chandani, E. Gorecka, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. Appl. Phys., 28, 1265 (1989).
[28]A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe. J. Mater. Chem., 4(7), 997 (1994).
[29]Y. Takanishi, H. Takezoe, A. Fukuda, H. Komura, J. Watanabe. Liq. Cryst., 2, 71 (1992).
[30]K. Hiraoka, A. Taguchi, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. Appl. Phys., 29, L103 (1990).
[31]F. Roussel, J.P. Bayle, M.A. Khan, B.M. Fung, O. Yokokohji, T. Shimizu, H. Koh, S. Kumai. Liq. Cryst., 26, 251 (1999).
[32]Frederic Guittard, Elisabeth Taffin de Givenchy, Serge Geribaldi and Aime Cambon, J. Flu. Chem., 100, 85 (1999).
[33]A.I. Stipetic, J.W. Goodby, M. Hird, Y.M. Raoul, H.F. Gleeson. Liq. Cryst., 33, 819 (2006).
[34]G.W. Gray, M. Hird, D. Lacey, K.J. Toyne. Mol. Cryst. Liq. Cryst., 172, 165 (1989).
[35]G.W. Gray, M. Hird, D. Lacey, K.J. Toyne. J. chem. Soc., Perkin Trans., 2, 2041 (1989).
[36]P. Balkwill, D. Bishop, A. Pearson, I. Sage. Mol. Cryst. Liq. Cryst., 123, 1 (1985).
[37]G.W. Gray, M. Hird, K.J. Toyne. Mol. Cryst. Liq. Cryst., 204, 43 (1991).
[38]M. Hird, K.J. Toyne, G.W. Gray, D.G. McDonnell, I. C. Sage. Liq. Cryst., 18, 1 (1995).
[39]M. Hird, K.J. Toyne. Mol. Cryst. Liq. Cryst., 323, 1 (1998).
[40]M. Hird, J.W. Goodby, R.A. Lewis, K.J. Toyne. Mol. Cryst. Liq. Cryst., 401, 1 (2003).
[41]Y. Suzuki, O. Nonaka, Y. Koide, N. Okabe, T. Hagiwara, I. Kawamura, N. Yamamoto, T. Kitzume. Ferroelectrics, 147, 109 (1993).
[42]S.L. Wu, T.C. Lin. Liq. Cryst., 32, 797 (2005).
[43]S.J. Cowling, A.W. Hall, J.W. Goodby, Y. Wang, H.F. Gleeson. J. Mater. Chem., 16, 2181 (2006).
[44]M.E. Neubert, S.S. Keast, C.C. Law, M.C. Lohman, J.C. Bhatt. Liq. Cryst., 32, 781 (2005).
[45]S.J. Cowling, K.J. Toyne, J.W. Goodby. J. Mater. Chem., 11, 1590 (2001).
[46]S.L. Wu, C.T. Chiang. Liq. Cryst., 29, 39 (2002).
[47]S.L. Wu, C.Y. Lin. Liq. Cryst., 32, 663 (2005).
[48]S.L. Wu, C.Y. Lin. Liq. Cryst., 30, 471 (2003).
[49]S.L. Wu, C.Y. Lin. Liq. Cryst., 32, 1053 (2005).
[50]J. Wook, Y.B. Kim. Ferroelectrics, 276, 13 (2002).
[51]A.I. Pavluchenko, N.I. Smirnova, V.F. Petrov, Y.A. Fialkov, S.V. Shelyazhenko, M. Schadt, R. Bucheker. Mol. Cryst. Liq. Cryst., 265, 5 (1995).
[52]T. Kondou, S. Matsui, K. Miyazawa, H. Takeuchi, Y. Kubo, F. Takeshita, E. Nakagawa. PCT Int. Appl., WO9 813 323 (1998).
[53]H. Hirschmann, S. Schuepfer, M. Reuter. Ger. Offen, DE19 733 199 (1999).
[54]K. Tarumi, M. Roiter, E. Poetsch, M. Schwarz, V. Reiffenrath. Jpn. Kokai Tokkyo Koho, JP2 000 096 059 (2000).
[55]E.P. Janulis, J.C. Novack, G.A. Papapolymerou, M. Tristanikendra, W.A. Huffman. Ferroelectrics, 85, 375 (1988).
[56]A.V. Ivashchenko, E.I. Kovshev, V.T. Lazareva, E.K. Prudnikova, V.V. Titov, T. I. Zverkova, M.I. Barnik, L. M. Yagupol’skii. Mol. Cryst. Liq. Cryst., 67, 235 (1981).
[57]E. Bartmann, Ber. Bunsenges. Phys. Chem., 97, 1349 (1993).
[58]Y. Suzuki, T. Hagiwara, I. Kawamura. Liq. Cryst., 6, 167 (1989).
[59]Y. Suzuki, O. Nonaka, N. Okabe, T. Hagiwara, I. Kawamura, N. Yamamoto, Y. Yamada, T. Kitazume. Ferroelectrics, 147, 109 (1996).
[60]H.T. Nguyen, J.C. Rouillon, A. Babeau, J.P. Marcerou, H. Cotrait, H. Allouchi. Liq. Cryst., 26, 1007 (1999).
[61]S. Sarmento, P. Simeâo Carvalho, M. Glogarová, M.R. Chaves, H.T.Nguyen, M. J. Ribeiro. Liq. Cryst., 25, 375 (1998).
[62]S.L. Wu, J.Y. Chuang. Liq. Cryst., 32, 1 (2005)
[63]K. Mitasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze. Jpn. J. Appl. Phys., 22, L661 (1983).
[64]S. Wrobrl, W. Haase, M. Pfeiffer, L. Beresnev, T. Geelhaar. Mol. Cryst. Liq. Crysr., 212, 335 (1992).
[65]F. Gouda, K. Skarp, S.T. Lagerwall. Ferroelectrics. 113, 165 (1991).
[66]K. Hiraoka, A.D.L. Chandani, E. Gorecka. Jpn. J. appl. Phys., 29, L1473 (1990).
[67]Y. Takanishi, K. Hiraoka, V.K. Agrawal, H. Takezoe, A. Fukuda, M. Matsushita. Jpn. J. appl. Phys., 30, 2023 (1991).
[68]H. Liu, H. Nohira. Liq. Cryst. 24, 719 (1998).
[69]I. Nishiyama, J.W. Goocby. J. mater. Chem., 2, 1015 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊