(3.236.122.9) 您好!臺灣時間:2021/05/14 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蕭世和
研究生(外文):Shih-Ho Hsiao
論文名稱:探討具有乙烷基為側邊取代基及不同氟烷鏈長度的旋光性液晶材料的液晶相及其光電性質
論文名稱(外文):Study on the Mesophases and Eletric-optical Properties of Chiral Materials possessing Lateral Ethyl Substituent and Various Fluorinated Alkyl Chains at Chiral Tail
指導教授:吳勛隆
指導教授(外文):Shune-Long Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:125
中文關鍵詞:反誘電性液晶半氟化液晶材料誘電性液晶
外文關鍵詞:ferroelectric phasesemi-fluorinated liquid crystal materialsantiferroelectric phase.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究的主要目的為探討具有旋光側邊取代基為乙基的液晶材料延長旋光末端的氟化烷鏈長度,對於液晶相性質及光電性質的影響。合成四系列同樣以(S)-butylene oxide為起始物並與半氟化醇類及未氟化醇類反應之旋光性液晶材料,以探討其液晶相及光電性質。
藉由偏光紋理圖及DSC的鑑定可分別得知液晶相及相轉移溫度的變化,經由電流轉換行為及介電性質的量測可進一步鑑定誘電性及反誘電性液晶相的存在。
實驗結果指出: 隨著旋光末端之半氟化烷鏈的長度由-CF3(compounds II-6(m=8-12)),-CF2CF3(compounds III-6(m=8-12)) 增加至-CF2CF2CF3 (compounds IV-6(m=8-12)),結果顯示半氟化液晶材料會提高反誘電性液晶相的熱穩定度與溫度範圍;半氟化與未氟化液晶材料相比,半氟化液晶材料利於反誘電液性晶相的生成但誘電性液晶相卻消失。具有旋光中心側邊取代基為乙基與為甲基的液晶材料相比,具有旋光性中心側邊取代基為乙基的液晶材料有利於反誘電性液晶相的生成但卻抑制誘電性液晶相的生成。
在物理性質量測方面結果顯示:在半氟化液晶材料中,隨著旋光末端之半氟化烷鏈的長度由-CF3(compounds II-6(m=8-12)),-CF2CF3(compounds III-6(m=8-12)) 增加至-CF2CF2CF3 (compounds IV-6(m=8-12)),其PS值會變大但傾斜角則無明顯改變。未氟化與半氟化液晶材料相比,半氟化液晶材料的自發性極化值與傾斜角均較未氟化的液晶材料大。無論是半氟化或未氟化液晶材料,結果顯示隨著旋光中心的側邊取代基的烷鏈長度由甲基延長至乙基時,自發性極化值降低但光學傾斜角卻變大
總而言之,具有氟化烷鏈及旋光中心側邊乙烷取代基的旋光材料與結構類似的旋光側邊甲烷取代基的材料相比,前者利於生成反誘電性液晶相、誘電性液晶相會消失、最大自發性極化值降低且傾斜角增大。

關鍵字: 半氟化液晶材料、誘電性液晶、反誘電性液晶
ABSTRACT
The purpose of this research work was an attempt to elucidate the effect of the extension of semi-fluorinated chiral alkyl length of liquid crystal materials possessing the lateral ethyl substituent at asymmetric carbon on the mesomorphic and electro-optical properties. Four series of chiral liquid crystal materials derived optically active chiral alcohols which were previously prepared from (S)-butylene oxide reacting with semi-fluorinated and non-fluorinated alkanols under basic condition, were designed and synthesized to investigate the mesomorphic and electro-optical properties.
The mesomorphic phases and their corresponding transition temperatures were primarily characterized by the microscopic textures and DSC thermograms, and the ferroelectric and antiferroelectric phases were further identified by the measurements of electric switching behavior and dielectric constant ε'.
The results show that the semi-fluorinated liquid crystal materials can enhance the thermal stability and the temperature range of antiferroelectric phase by extending the length of semi-fluorinated chiral alkyl chains at chiral tail from -CF3 (compounds II-6(m=8-12)), -CF2CF3 (compounds III-6(m=8-12)) to -CF2CF2CF3 (compounds IV-6(m=8-12)). Comparing the non-fluorinated with semi-fluorinated liquid crystal materials, the results show that the semi-fluorinated materials facilitate the formation of antiferroelectric phase but the ferroelectric phase becomes eclipsed. Comparing the liquid crystal materials possessing the lateral ethyl to that possessing methyl substituent at the asymmetric carbon, the former facilitate the formation of antiferroelectric phase but suppress the formation of ferroelectric phase.
The physical properties of the chiral materials in ferroelectric and antiferroelectric phases were also measured. In the semi-fluorinated liquid crystal materials, the maximum Ps values are increased but the optical tilt angles (θ) have no obvious differences by extending the length of semi-fluorinated alkyl chains at chiral tail from -CF3 (compounds II-6(m=8-12)), -CF2CF3 (compounds III-6(m=8-12)) to -CF2CF2CF3 (compounds IV-6(m=8-12)). Comparing the non-fluorinated with semi-fluorinated liquid crystal materials, the latter have the higher maximum Ps values and the optical tilt angles (θ) then the former. Regardless of semi-fluorinated or non-fluorinated liquid crystal materials, the results show that the maximum Ps values decrease but the optical tilt angles (θ) increase by extending the lateral alkyl substituent at the asymmetric carbon from methyl to ethyl groups.
In conclusion, the chiral materials having fluorinated alkyl chain and lateral ethyl substituent at asymmetric carbon of the chiral group facilitate the formation of antiferroelectric phase, eclipse the ferroelectric phase, decrease the meting point and the maximum Ps value, but increase the optical tilt angle (θ), as compared to the structural similar chiral materials having lateral methyl substituent at the asymmetric carbon.

Keywords: semi-fluorinated liquid crystal materials, ferroelectric phase, antiferroelectric phase.
TABLE OF CONTENTS
ACKNOWLEDGEMENTS III
ABSTRATE IV
摘要 VI
TABLE OF CONTENTS VIII
LIST OF SCHEME XIV
LIST OF TABLES XV
LIST OF FIGURES XVI
CHAPTER 1
INTRODUCTION 1
1.1. Overview 1
1.2. Chiral smectic phases 4
1.2.1 Chiral smetic A phase 4
1.2.2. Chiral smetic C phase (ferroelectric phase) 5
1.2.3. Antiferroelectric (SmCA*) phase 9
1.2.3.1. Instruction 9
1.2.3.2. Structure 9
1.2.3.3. Antiferroelectric liquid crystal materials 11
1.2.3.4. Electric-response switching behavior 12
1.3. Motivation of study 14
CHAPTER 2
EXPERIMENTAL 20
2.1. Preparation of Materials 20
2.1.1. Synthesis of 4-(4’-alkoxyphenyl)benzoic acid, 1(m=8-12) 22
2.1.2. Synthesis of 4-[(methoxycarbonyl)oxy]benzoic acid, 2 22
2.1.3. Synthesis of (S)-1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2-butanol, IV-3 22
2.1.4. Synthesis of (S)-1-butoxy-2-butanol, I-3 23
2.1.5. Synthesis of (S)-1-(2,2,2-trifluoroethoxy)-2-butanol, II-3 23
2.1.6. Synthesis of (S)-1-(2,2,3,3,3-pentafluoropropoxy)-2-butanol, III-3 23
2.1.7. Synthesis of (R)-1-butoxy-2-butyl 4-[(methoxycarbonyl)oxy]benzoate, I-4 24
2.1.8. Synthesis of (R)-1-(2,2,2-trifluoroethoxy)-2-butyl 4-[(methoxycarboyl)oxy]
benzoate, II-4 24
2.1.9. Synthesis of (R)-1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2-butyl 4-
[(methoxycarbonyl)oxy]benzoate,IV-4 25
2.1.10. Synthesis of (R )-1-butoxy-2-butyl 4-hydroxybenzoate, I-5 25
2.1.11. Synthesis of (R)-1-(2,2,2-trifluoroethoxy)-2-butyl 4-hydroxybenzoate, II-5, and (R)-1-(2,2,3,3,3-pentafluoropropoxy)-2-butyl 4-hydroxybenzoate, III-5 25
2.1.12. Synthesis of (R)-1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2-butyl 4-hydroxybenzoate, IV-5 26
2.1.13. Synthesis of (R)-4-(1-butoxy-2-butyloxycarbonyl)phenyl 4-(4’-octyloxyphenyl)benzonates, I-6(m=8) 26
2.1.14. Synthesis of (R)-4-(1-butoxy-2-butyloxycarbonyl)phenyl 4-(4’-nonyloxyphenyl)benzonates, I-6(m=9) 27
2.1.15. Synthesis of (R)-4-(1-butoxy-2-butyloxycarbonyl)phenyl 4-(4’-decyloxyphenyl)benzonates, I-6(m=10) 28
2.1.16. Synthesis of (R)-4-(1-butoxy-2-butyloxycarbonyl)phenyl 4-(4’-undecyloxyphenyl)benzonates, I-6(m=11) 28
2.1.17. Synthesis of (R)-4-(1-butoxy-2-butyloxycarbonyl)phenyl 4-(4’-dodecyloxyphenyl)benzonates, I-6(m=12) 29
2.1.18. Synthesis of (R)-4-[1-(2,2,2-trifluoroethoxy)-2-butyloxycarbonyl]phenyl 4’-octyloxybiphenyl-4-carboxylate, II-6(m=8) 29
2.1.19. Synthesis of (R)-4-[1-(2,2,2-trifluoroethoxy)-2-butyloxycarbonyl]phenyl 4’-nonyloxybiphenyl-4-carboxylate, II-6(m=9) 30
2.1.20. Synthesis of (R)-4-[1-(2,2,2-trifluoroethoxy)-2-butyloxycarbonyl]phenyl 4’-decyloxybiphenyl-4-carboxylate, II-6 (m=10) 30
2.1.21. Synthesis of (R)-4-[1-(2,2,2-trifluoroethoxy)-2-butyloxycarbonyl]phenyl 4’-undecyloxybiphenyl-4-carboxylate, II-6 (m=11) 31
2.1.22. Synthesis of (R)-4-[1-(2,2,2-trifluoroethoxy)-2-butyloxycarbonyl]phenyl 4’-dodecyloxybiphenyl-4-carboxylate, II-6 (m=12) 31
2.1.23. Synthesis of (R)-4-[1-(2,2,3,3,3-pentafluoropropoxy)-2-butyloxycarbonyl]phenyl 4’-octyloxybiphenyl-4-carboxylate, III-6(m=8) 32
2.1.24. Synthesis of (R)-4-[1-(2,2,3,3,3-pentafluoropropoxy)-2-butyloxycarbonyl] phenyl 4’-nonyloxybiphenyl-4-carboxylate, III-6(m=9) 32
2.1.25. Synthesis of (R)-4-[1-(2,2,3,3,3-pentafluoropropoxy)-2-butyloxycarbonyl] phenyl 4’-decyloxybiphenyl-4-carboxylate, III-6(m=10) 33
2.1.26. Synthesis of (R)-4-[1-(2,2,3,3,3-pentafluoropropoxy)-2-butyloxycarbonyl] phenyl 4’-undecyloxybiphenyl-4-carboxylate, III-6(m=11) 33
2.1.27. Synthesis of (R)-4-[1-(2,2,3,3,3-pentafluoropropoxy)-2-butyloxycarbonyl] phenyl 4’-dodecyloxybiphenyl-4-carboxylate, III-6(m=12) 34
2.1.28. Synthesis of (R)-4-[1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2-butyloxycarbonyl] phenyl 4’-octyloxybiphenyl-4-carboxylate, IV-6 (m=8) 34
2.1.29. Synthesis of (R)-4-[1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2- butyloxycarbonyl]phenyl 4’-nonyloxybiphenyl-4-carboxylate, IV-6 (m=9) 35
2.1.30. Synthesis of (R)-4-[1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2-butyloxycarbonyl] phenyl 4’-decyloxybiphenyl-4-carboxylate, IV-6 (m=10) 35
2.1.31. Synthesis of (R)-4-[1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2-butyloxycarbonyl] phenyl 4’-undecyloxybiphenyl-4-carboxylate, IV-6 (m=11) 36
2.1.32. Synthesis of (R)-4-[1-(2,2,3,3,4,4,4-heptafluorobutoxy)-2-butyloxycarbonyl] phenyl 4’-dodecyloxybiphenyl-4-carboxylate, IV-6 (m=12) 36
2.2. Characterization of Materials 38
2.2.1. Chemical structure identification 38
2.2.2. Masophase identification 38
2.2.3. The spontaneous polarization (Ps) measurement 38
2.2.4. Measurements of switching behavior 41
2.2.5. Dielectric constant measurement 41
2.2.6. Optical tilt angle measurement 42
CHAPTER 3
RESULTS AND DISCUSSION 43
3.1. Chemical structure identification 43
3.2. The effect of peripheral chain length on the mesomorphic properties of compounds I-6(m=8-12) 43
3.2.1. Mesomorphic phase studies for the compounds I-6(m=8-12 44
3.2.2. Differential scanning calorimetric (DSC) studies for the compounds I-6(m=8-12) 44
3.2.3. Switching current behavior studies for the compounds I-6(m=8-12) 49
3.2.4. Dielectric property measurements for the compounds I-6(m=8-12) 51
3.2.5. Spontaneous polarization (Ps) measurements for the compounds I-6(m=8-12) 52
3.2.6. The optical tilt angle (θ) measurements for the compounds I-6(m=8-12) 52
3.3. The effect of peripheral chain length on the mesomorphic properties of compounds II-6(m=8-12) 54
3.3.1. Mesomorphic phase studies for the compounds II-6(m=8-12) 54
3.3.2. Differential scanning calorimetric (DSC) studies for the compounds II-6(m=8-12) 56
3.3.3. Switching current behavior studies for the compounds II-6(m=8-12) 59
3.3.4. Dielectric property measurements for the compounds II-6(m=8-12) 61
3.3.5. Spontaneous polarization (Ps) measurements for the compounds II-6(m=8-12) 62
3.3.6. The optical tilt angle (θ) measurements for the compounds II-6(m=8-12) 62
3.4. The effect of peripheral chain length on the mesomorphic properties of compounds III-6(m=8-12) 64
3.4.1. Mesomorphic phase studies for the compounds III-6(m=8-12) 64
3.4.2. Differential scanning calorimetric (DSC) studies for the compounds III-6(m=8-12) 66
3.4.3. Switching current behavior studies for the compounds III(m=8-12) 69
3.4.4. Dielectric property measurements for the compounds III(m=8-12) 71
3.4.5. Spontaneous polarization (Ps) measurements for the compounds III-6(m=8-12) 72
3.4.6. The optical tilt angle (θ) measurements for the compounds III-6(m=8-10) 72
3.5. The effect of peripheral chain length on the mesomorphic properties of compounds IV-6(m=8-12 74
3.5.1. Mesomorphic phase studies for the compounds IV-6(m=8-12) 74
3.5.2. Differential scanning calorimetric (DSC) studies for the compounds IV-6(m=8-12) 76
3.5.3. Switching current behavior studies for the compounds IV-6(m=8-12) 80
3.5.4. Dielectric property measurements for the compounds IV-6(m=8-12) 81
3.5.5. Spontaneous polarization (Ps) measurements for the compounds IV-6(m=8-12) 82
3.5.6. The optical tilt angle (θ) measurements for the compounds IV-6(m=8-12) 82
3.6. Comparison of mesomorphic property, spontaneous polarization, and optical tilt angle for I-6(m=8-12), II-6(m=8-12), III-6(m=8-12), and IV-6(m=8-12) 84
3.6.1. Mesomorphic property 84
3.6.2. Spontaneous polarization (Ps) 86
3.6.3. The optical tilt angle (θ) 86
3.7. The comparison of the materials possessing the lateral methyl to ethyl substituent at the asymmetric carbon on mesomorphic and electro-optical properties 88
3.7.1. Mesomorphic property 88
3.7.2. Spontaneous polarization (Ps 91
3.7.3. The optical tilt angle (θ) 94
CHAPTER 4
CONCLCUSIONS 97
REFERENCES 99
REFERENCES
[1]D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill. Handbook of Liquid Crystals, 2(A), 3 (1998).
[2]F. Reinitzer. Monatsh. Chem., 9, 421 (1888).
[3]R. B. Meyer, L. Liebert, L. Strzelecki, P. Keller. J. Phys. (Pairs) Lett., 36, L69 (1975).
[4]A.D.L. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. Appl. Phys., 27, L729 (1988).
[5]A.D.L. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, K. Terashima, K. Furukawa, A. Kishi. Jpn. J. Appl. Phys., 28, L1261 (1989).
[6]E. Gorecka, A.D.L. Chanani, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. Appl. Phys., 29, 131 (1990).
[7]J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J. S. Patel. J. Am. Chem. Soc., 111, 8119 (1989).
[8]L.J. Yu, H. Lee, C.S. Bak, M.M. Labes. Phys. Rev. Lett., 36, 388 (1976).
[9]N.A. Clark, S.T. Lagerwall. Appl. Phys. Lett., 36, 899 (1980).
[10] M. Yamawaki, Y. Yamada, N. Yamamoto, K. Mori, H. Hayashi, Y. Suzuki, Y. S. Negi, T. Hagiwara, I. Kawamura, H. Orihara, Y. Ishibahsi. Jpn. Display '89, 26 (1989).
[11]J. Johno, A.D.L. Chandani, J. Lee, Y. Ouchi, H. Takezoe, A. Fukuda, K. Ioth, T. Kitazume. Proc. Jpn. Display, 22 (1989).
[12]S. S. Seomun, T. Gouda, Y. Takanishi, K. Ishikawa, H. Takezoe, A. Fukuda. Liq. Cryst., 26, 151 (1999).
[13]A. Chandani, Y. Cui, S. S. Seomun, Y. Takanishi, K. Ishikawa, H. Takezoe, A. Fukuda. Liq. Cryst., 26, 167 (1999).
[14]P. Rudquist, J. P. F. Lagerwall, M. Buivydas, F. Gouda, S. T. Lagerwall, N. A. Clark, J. E. Maclennan, R. Shao, D. A. Coleman, S. Bardon, T. Bellini, D. R. Link, G. Natale, M. A. Glaser, D. M. Walba, M. D. Wandc, X.-H. Chenc. J. Mater. Chem., 9, 1257 (1999).
[15]N. A. Clark, D. Coleman, J. E. Maclennan. Liq. Cryst., 27, 985 (2000).
[16]S. Inui, N. Limura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, A. Fukuda. J. Mater. Chem., 6(4), 671 (1996).
[17]S. Garoff, R. B. Meyer. Phys. Rev. Lett., 38, 848 (1977).
[18]S. Garoff, R. B. Meyer. Phys. Rev. A, 19, 338 (1979).
[19]D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill. Handbook of Liquid Crystals, 2(A), 127 (1998). (Wiley-VCH)
[20]D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill. Handbook of Liquid Crystals, 2(A), 118-119 (1998). (Wiley-VCH)
[21] A.D.L. Chandani, E. Gorecka, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. Appl. Phys., 28, 1265 (1989)
[22]A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe. J. Mater. Chem., 4(7), 997 (1994).
[23]Y. Takanishi, H. Takezoe, A. Fukuda, H. Komura, J. Watanabe. Liq. Cryst., 2, 71 (1992).
[24]K. Hiraoka, A. Taguchi, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. Appl. Phys., 29, L103 (1990).
[25]D. Demus, J.W. Goodby, G. W. Gray, H.W. Spiess, V. Vill. Handbook of Liquid Crystals, 2(B), p.684-688 (1998). (Wiley-VCH)
[26] H. Hayashi, M. Takemura, K. Kikuchi, Y. Hijikata, H. Orihara, Y. Ishibashi. Jpn. J. Appl. Phys., 31, 3182 (1992).
[27] F. Roussel, J.-P. Bayle, M. A. Khan, B. M. Fung, O. Yokokohji, T. Shimizu, H. Koh, S. Kumai. Liq. Cryst., 26, 251 (1999).
[28] Frederic Guittard, Elisabeth Taffin de Givenchy, Serge Geribaldi and Aime Cambon, J. Flu. Chem., 100, 85 (1999).
[29]Y. Suzuki, O. Nonaka, Y. Koide, N. Okabe, T. Hagiwara, I. Kawamura, N. Yamamoto, T. Kitzume. Ferroelectrics, 147, 109 (1993).
[30]S.L. Wu, T.C. Lin. Liq. Cryst., 32, 797 (2005).
[31]S. J. Cowling, A. W. Hall, J. W. Goodby, Y. Wang, H. F. Gleeson. J. Mater. Chem., 16, 2181 (2006).
[32]M. E. Neubert, S. S. Keast, C. C. Law, M. C. Lohman, J. C. Bhatt. Liq. Cryst., 32, 781 (2005).
[33]S. J. Cowling, K. J. Toyne, J. W. Goodby. J. Mater. Chem., 11, 1590 (2001).
[34]S.L. Wu, C.T. Chiang. Liq. Cryst., 29, 39 (2002).
[35]S.L. Wu, C.Y. Lin. Liq. Cryst., 32, 663 (2005).
[36]S.L. Wu, C.Y. Lin. Liq. Cryst., 30, 471 (2003).
[37]S.L. Wu, C.Y. Lin. Liq. Cryst., 32, 1053 (2005).
[38]J. Wook, Y. B. Kim. Ferroelectrics, 276, 13 (2002).
[39]A. I. Pavluchenko, N. I. Smirnova, V. F. Petrov, Y. A. Fialkov, S. V. Shelyazhenko, M. Schadt, R. Bucheker. Mol. Cryst. Liq. Cryst., 265, 5 (1995).
[40]T. Kondou, S. Matsui, K. Miyazawa, H. Takeuchi, Y. Kubo, F. Takeshita, E. Nakagawa. PCT Int. Appl., WO9 813 323 (1998).
[41]H. Hirschmann, S. Schuepfer, M. Reuter. Ger. Offen, DE19 733 199 (1999).
[42]K. Tarumi, M. Roiter, E. Poetsch, M. Schwarz, V. Reiffenrath. Jpn. Kokai Tokkyo Koho, JP2 000 096 059 (2000).
[43]A. I. Stipetic, J. W. Goodby, M. Hird, Y. M. Raoul, H. F. Gleeson. Liq. Cryst., 33, 819 (2006).
[44] I. Nishiyama, J. W. Goodby. J. Mater. Chem., 3(2). 149 (1993).
[45] C. J. Booth, D. A. Dunmur, J. W. Goodby, K. J. Toyne. Liq. Cryst., 20, 815 (1996).
[46]Y. Suzuki, T. Hagiwara, I. Kawamura. Liq. Cryst., 6, 167 (1989).
[47]Y. Suzuki, O. Nonaka, N. Okabe, T. Hagiwara, I. Kawamura, N. Yamamoto, Y. Yamada, T. Kitazume. Ferroelectrics, 147, 109 (1996).
[48] S.L. Wu, C.Y. Lin. Liq. Cryst., 33, 537 (2006)
[49] H. C. Chitwood, B. T. Freure. J. Am. Chem.. Soc., 68, 680 (1946)
[50]K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze. Jpn. J. Appl. Phys., 22, L661 (1983).
[51]S. Wrobrl, W. Haase, M. Pfeiffer, L. Beresnev, T. Geelhaar. Mol. Cryst. Liq. Cryst., 212, 335 (1992).
[52]T. R. Taylor, J. R. Fergasson, S. L. Arora. Phys. Rev. Lett., 194, 359 (1970)
[53]L. M. Blinov, V. A. Baikalov, M. I. Barnik, L. A. Beresnev, E. P. Pozhidaev, S. A. Yablonsky. Liq. Cryst., 2, 121 (1987)
[54]F. Gouda, K. Skarp, S. T. Lagerwall. Ferroelectrics, 113, 165 (1991).
[55]H. Takezoe, K. Hiraoka, T. Isozaki, K. Miyachi, H. Aoki, A. Fukuda. Modern Topics in Liquid Crystal-From Neutron Scattering to Ferroelectricity-World Scientific, 319 (1993).
[56]Yoshio Aoki, Hiroyuki Nohira. Liq. Cryst., 23, 87 (1997).
[57]Y. Chen, W.J. Wu. Liq. Cryst., 25, 309 (1998).
[58]M. Buivyads, F. Gouda, G. Andersson, S. T. Lagerwall, B. Stebler, J. Bomelburg, G. Heppke, B. Gestblom. Liq. Cryst., 23, 723 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔