(18.206.238.77) 您好!臺灣時間:2021/05/18 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林少鑫
研究生(外文):Shao-Hsin Lin
論文名稱:探討以表面改質增進聚(3-己基噻吩)有機薄膜電晶體之特性
論文名稱(外文):Studies on the Enhancement inthe Electrical Characteristics ofPoly(3-hexylthiophene)Organic Thin Film Transistorby Surface Treatment
指導教授:郭欽湊
指導教授(外文):Chin-Tsou Kuo
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:112
中文關鍵詞:聚(3-己基噻吩)自組裝層.有機薄膜電晶體
外文關鍵詞:Self assembled monolayer (SAM).Organic thin-film transistor (OTFT)Poly(3-hexylthiophene) (P3HT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本實驗為使用高位置規則性聚(3-己烷基噻吩) (high regioregular poly(3-hexylthiophene, P3HT)為半導體材質之有機薄膜電晶體之研究。實驗發現以自組裝層對SiO2絕緣層與金電極進行處理可大幅增加有機薄膜電晶體之特性。
在本實驗中,以六甲基二矽氮烷 (1,1,1,3,3,3-Hexamethyldisilazane, HMDS)使用真空蒸氣法對SiO2絕緣層進行表面處理,其電晶體之載子位移率與開關電流比之未處理之電晶體皆可提升約10倍。由絕緣層表面處理後的表面能量,可得知表面能量降低,OTFT其載子位移率增加,SiO2絕緣層以HMDS處理不只可將Si-OH 置換為 S-OR以減少表面缺陷,並可增加半導體層之結晶性。
另一方面,以三種不同的有機硫醇作為金電極表面處理劑,結果發現分別使用1-octadecanethiol (1-ODT)、thiolphenol (TP)與4-nirothiophenol (4-NTP)所製作之薄膜電晶體之載子位移率比未處理可增進10倍,並在次臨界斜率亦有明顯之改善,其中以4-NTP處理為最佳。其載子位移率,開關電流比,起始電壓以及次臨界斜率分別為4.03 x 10-2 cm2/Vs,3.27 x 103,2.32 V與 1.60 V/decade。
進一步實驗發現先以4-NTP對金電極處理再以HMDS對SiO2處理形成雙層自組裝層處理,可進一步增進P3HT薄膜電晶體之特性。其載子位移率及開關電流比,分別可達到其載子位移率,開關電流比,起始電壓以及次臨界斜率分別為9.54 x 10-2 cm2/Vs,6.68 x 104,2.73 V,1.92 V/decade(在常壓下)與 2.13 x 10-1 cm2/Vs,1.15 x 105,-1.47 V,1.4 V/decade (在部份真空下)。
The characteristics of organic thin-film transistors (OTFTs) fabricated with highly regioregular poly(3-hexylthiophene) (P3HT) as semiconducting layer have been investigated. It is found that the electrical characteristics of P3HT OTFT fabricated with both SiO2 insulator and gold electrode treated with self-assembled monolayer (SAM) can be improved significantly
The charge transport mobility and on/off current ratio of P3HT OTFT with SiO2 insulator modified with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) by vacuum evaporating method are about one order of magnitude larger than those of device with untreated SiO2. It is found that the carrier transport mobility of OTFT increases with decreasing surface energy, which is due to the surface treatment of insulator. The HMDS treated-SiO2 insulator not only can be changed Si-OH to S-OR to reduce trapping center, but also improve crystalline order of P3HT thin film deposited.
On the other hand, the charge transport mobility of P3HT OTFT for gold electrodes modified with three kinds of organic thiols: 1-octadecanethiol (1-ODT)、thiolphenol (TP) and 4-nirothiophenol (4-NTP), respectively, can be increased one order of magnitude larger than those of device with untreated SiO2. It is found that the subthreshold slope can be enhanced significantly. The charge transport mobility, on/off current ratio, threshold voltage, and subthreshold slope of P3HT OTFT with 4-NTP treated gold electrodes are 4.03 x 10-2 cm2/Vs,3.27 x 103,2.32 V and 1.60 V/decade, respectively. Furthermore, the charge transport mobility, on/off current ratio, threshold voltage, and subthreshold slope of P3HT OTFT fabricated by combing capping both gold electrode with 4-NTP and SiO2 with HMDS are 9.54 x 10-2 cm2/ Vs, 6.68 ×104, 2.73 V and 1.92 V/decade (under ambient conditions) and 2.13 x 10-1 cm2/ Vs, 1.15 × 105, -1.47 V and 1.40 V/decade (under partial vacuum of 3.7 x 10-2 torr), respectively.
致謝 i
英文摘要 ii
中文摘要 iv
目錄 vi
表目錄 ix
圖目錄 x
Scheme目錄 xvi
第一章 簡介 1
1.1 前言 1
1.2 有機導電高分子與導電機構 4
1.2.1 能帶理論 4
1.2.2 偏極子(Polaron)和雙偏極子(bipolaron) 6
第二章 文獻回顧 9
2.1 有機薄膜電晶體(Organic Thin Film Transistor,OTFT) 9
2.1.1 有機薄膜電晶體基本原理與構造 10
2.1.2 有機薄膜電晶體電壓電流計算公式 13
2.2 有機半導體材質 18
2.3 自組裝層(Self Assembled Monolayers ) 22
2.4 無機絕緣層表面處理 25
2.5 金電極表面處理 28
2.6 接觸角與表面能量之計算 29
2.6.1 接觸角的定義 29
2.6.2 表面能量之計算 29
2.8 研究動機(Motivation of this study ) 32
第三章 實驗部份 33
3.1 材質 33
3.2 溶劑 33
3.3 其它 34
3.4 有機薄膜電晶體製備 35
3.4.1 以HMDS進行絕緣層表面處理 39
3.4.2 以不同官能基硫醇對金電極處理 40
3.4.3 半導體層沉積與OTFT I-V特性量測 43
3.4.4 分別對絕緣層及電極進行SAMs處理 43
3.5 儀器設備 46
第四章 結果與討論 49
4.1 以HMDS進行絕緣層表面處理 49
4.2 以不同官能基硫醇對金電極處理 60
4.2.1 1-Octadecanethiol (1-ODT) 對金電極處理 60
4.2.2 Thiolphenol (TP)對金電極處理 68
4.2.3 4-Nitrothiolphenol (4-NTP) 對金電極處理 77
4.3 雙層SAMs之OTFT 89
第五章 結論 101
參考文獻 103
[1] A. Tsumura, H. Koezuka and T. Ando, Appl. Phys. Lett. 49, 1210 (1986).
[2] M. Angelopoulos, IBM J. Res. & Dev. 45, 57 (1999).
[3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, M. Logdlund and W. R. Salaneck, Nature 397, 121 (1999).
[4] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Rriend, P. L. Burn and A. B. Holmes, Nature 347, 539 (1990).
[5] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. Janssen, E. W. Meijer, P. Herwing and D. M. de Leeuw, Nature 401, 685 (1999).
[6] Z. Bao, Adv. Mater. 12, 227 (2000).
[7] C. W. Tang and S. A. Van Slkye. Appl. Phys. Lett. 51, 913 (1987).
[8] J. R. Sheats, H. Antoniasis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman and A. Stocking, Nature 273, 884 (1996).
[9] S. F. Nelson, Y. Y. Lin, D. J. Gundlach and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
[10] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Seigrist, W. Li, Y. Y. Lin and A. Dodabalapur, Nature 404, 478 (2000).
[11] Advanced Information: The Nobel Prize in Chemistry, 2000: Conductive Polymer, B. Norden and E. Krutmeijer, The Royal Swedish Academy of Sciences.
[12] J. E. Lilienfeld, US Patent 1 745 175 (1930).
[13] D. Kahng and M. M. Atalla, IRE Solid-State Devices Research Conference, Carnegie Institute of Technology, Pittsburgh PA, 1960.
[14] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, 1999, p. 337.
[15] D. F. Barbe and C. R. Westgate, J. Phys. Chem. Solids 31, 2679 (1970).
[16] M. L. Petrova, L. D. Rozenshtein and F. T. Sov, Phys. Solid State 12, 961 (1970).
[17] F. Ebisawa, T. Kurokawa and S. Nara, J. Appl. Phys. 54, 3255 (1983).
[18] J. A. Rogers, Z. Bao, K. Bladwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Huck, H. E. Katz, K. Amundson, J. Ewing and P. Drzaic, Proc. Natl. Acad. Sci. 98, 4835 (2001).
[19] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlacg, T. N. Jackson, M. G. Kane, G. I. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl and J. West, Appl. Phys. Lett. 80, 1088 (2002).
[20] Z. T. Zhu, J. T. Mason, R. Dieckmann and G. G. Malliaras, Appl. Phys. Lett. 81, 4643 (2002).
[21] B. K. Crone, A. Dodabalapur, R. Sarpeshkar, A. Gelerpin, H. E. Katz and Z. Bao, J. Appl. Phys. 91, 10140 (2002).
[22] D. Voss, Nature 407, 442 (2000) .
[23] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelly, D. V. Muyres and S. D. Thesis, Appl. Phys. Lett. 82, 3946 (2003).
[24] H. Sirringhaus, N. Tessler and R. H. Friend, Science 280, 1741 (1998).
[25] J. Paloheimo, H. Stubb, P. Yli-Lahti, P. Dyrekler and O. Inganas, Thin Solid Film 210, 283 (1992).
[26] M. Ahlskog, J. Pa loheimo, H. Stubb and A. Assadi, Synth. Met. 65, 77 (1994).
[27] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari and J. M. Shaw, Science 283, 822 (1999)
[28] H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Woo and E. P. Woo, Science 290, 2123 (2000).
[29] D. W. King, Y. D. Park, Y. Jang, H. Yang, Y. H. King, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu and K. Cho, Adv. Fun. Mater. 15, 77 (2005).
[30] M. M. Ling and Z. Bao, Chem. Mater. 16, 4824 (2004).
[31] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Bredas, P. C. Ewbank and K. R. Mann, Chem. Mater. 16, 4436 (2004).
[32] S. M. Sze, “Physics of Semiconductor Devices”, Wiley, New York, CH. 7, 1981.
[33] 陳壽安, 化工 38, 98 (1992).
[34] F. garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries and P. Alnot, J. Am. Chem. Soc. 115, 8716 (1993).
[35] A. Dodabalapur, L. Torsi and H. E. Katz, Science 268, 270 (1995). L. Torsi, A. Dodabalapur, A. J. Lovinger, H. E. Katz, R. Ruel, D. D. Davis and K. W. Baldwin, Chem. Mater. 7, 2247 (1995).
[36] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant and F. Garnier, Adv. Mater. 9, 557 (1997).
[37] M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz and T. J. Jackson, J. Am. Chem. Soc. 125, 9414 (2003).
[38] F. Garnier, R. Hailaoui, A. Yassar and P. Srivastava, Adv. Mater, 9, 57 (1997).
[39] H. E. Katz, Z. Bao and S. L. Gilat, Acc. Chem. Res. 34, 359 (2001).
[40] Z. Bao, A. J. Lovinger and A. Dodabalapour, Adv. Mater. 9, 42 (1997).
[41] T. W. Kelly, L. D. Boardman, T. D. Dunbar, D. V. Muyres, M. J. Pellerite and T. P. Smith, J. Phys. Chem. B. 107, 5877 (2003).
[42] H. Klauk, D. J. Dundlach, J. A. Nichols, C. D. Sheraw, M. Bonse and T. N. Jackson, Solid State Technol. 43, 63 (2000).
[43] J. E. Anthony, J. S. Brooks, D. L. Eaton and S. R. Parkin, J. Am. Chem. Soc. 123, 9482 (2001).
[44] J. D. Dundlach, J. A. Nichols, L. Zhou and T. N. Jackson, Appl. Phys. Lett. 80, 2925 (2002).
[45] H. Klauk, M. Halik, U. Zschieschang, F. Eder, G. Schmid and C. Dehm, Appl. Phys. Lett. 82, 4175 (2003).
[46] D. Kinipp, R. A. Street and A. R. Volkel, Appl. Phys. Lett. 82, 3907 (2003).
[47] W. H. Han, H. H. Choo and S. Im, J. Non-Cryst. Solids 303, 78 (2002).
[48] S. J. Kang, K. B. Chung, D. S. Park, H. J. Kim, Y. K. Choi, M. H. Jang, M. Noh and C. N. Whang, Synth. Met. 146, 351 (2004).
[49] L. A. Majewski, R. Schroeder and M. Grell, Adv. Mater. 17, 192 (2005).
[50] Salleo, M. Chabinyc, M. Yang and R. Street, Appl. Phys. Lett. 81, 4383 (2002).
[51] M. L. Chabinyc, J.-P. Lu, R. A. Street, Y. L. Wu, P. Liu and B. S. Ong, J. Appl. Phys. 96, 2063 (2004).
[52] B. S. Ong, Y. L. Wu, P. Liu and S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004).
[53] Z. Bao, A. J. Lovinger and A. Dodabalapour, J. Appl. Phys. 69, 4108 (1996).
[54] H. Sirringhaus, N. Tessler and R. H. Friend, Science 280, 1741 (1998).
[55] M. Raja, G. Lloyd, N. Sedghi, W. Eccleston, R. Di Lucrezia and R. S. Higgins, J. Appl. Phys. 92, 1441 (2002).
[56] G. Wang, J. Swenson, D. Moses and A. J. Heeger, J. Appl. Phys. 93, 6137 (2003).
[57] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, M. Joo, C. Y. Ryu and K. Cho, Adv. Fun. Mater. 15, 77 (2005).
[58] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langevels-Voss, A. J. H. Spiering, R. A. J. Janssen and E. W. Meijer, Synth. Met. 129, 111 (2000).
[59] R. J Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet and M. F. Toney, Macromolecules 38, 3312 (2005).
[60] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu and J. M. J. Frechet, Adv. Mater. 15, 1519 (2003).
[61] C. Tanase, E. J. Meijer, P. W. Blom and D. M. de Leeuw, Phy. Rev. Lett. 91, 216601 (2003).
[62] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. Janssen, E. W. Meijer, P. Herwing and D. M. de Leeuw, Nature 401, 685 (1999).
[63] W. A. Zisman, Adv. Chem. Ser. 43, 1 (1964).
[64] G. M. Whitesides and P. E. Laibinis, Langmuir 6, 87 (1990).
[65] L. Dubois and R. G. Nuzzo, Annu. Phys. Chem. 43, 437 (1992).
[66] C. D. Bain, E. B. Troughton, Y-T. Yao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989).
[67] R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc. 105, 4481 (1983).
[68] J. Sagiv, J. Am. Chem. Soc. 102, 92 (1980).
[69] A. Ulman, Chem. Rev. 96, 1533 (1996).
[70] S. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim and T. Zyung, Synth. Met. 148, 75 (2005).
[71] K. S. Pyo and C. K. Song, Thin Solid Films 485, 230 (2005).
[72] H. Sirringhaus, N. Tessler and R. H. Friend, Synth. Met. 102, 857 (1999).
[73] J. Veres, S. Ogier, G. Floyd and D. de. Leeuw, Chem. Mater. 16, 4543 (2004).
[74] M. Shtein, J. Mapel, J. B. Benziger and S. R. Forest, Appl. Phys. Lett. 81, 268 (2002).
[75] J. Lee, K. Kim, J. H. Kim and S. Ima, Appl. Phys. Lett. 82, 4171 (2003).
[76] L. L. Kosbar, C. D. Dimitrakopoulos and D. J. Mascaro, Res. Soc. Symp. Proc. 665, C10.6.1 (2001).
[77] A. Salleo, M. L. Chabinyc, M. S. Yang and R. A. Street, Appl. Phys. Lett. 81, 4383 (2002).
[78] T. W. Kelly, D. V. Muyres, M. J. Pellerite, T. D. Dunbar, L. D. Boardman and T. P. Smith, US Patent 6 433 359 (2002).
[79] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
[80] Y. Xu, D. Wu, Y. H. Sun, Z. H. Li, B. Z. Dong and Z. H. Wu, J. Non-Cryst. Solids 351, 258 (2005).
[81] J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch and H. Sirringhaus, Chem. Mater. 16, 4772 (2004).
[82] N. Koch, A. Elscher, J. Schwartz and A. Kahn, Appl. Phys. Lett. 82, 2281 (2003).
[83] D. J. Gundlach, L. Jia and T. N. Jackson, IEEE Trans. Electron Devices 22, 571 (2001).
[84] B. Yoo, T. Jung, D. Basu, A. Dodabalapur, B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, Appl. Phys. Lett. 88, 082104 (2006).
[85]T. Nishino, M. Meguro, K. Nakamae, M. Matsushita and Y. Ueda, Langmuir 15, 4321 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top