(3.80.6.131) 您好!臺灣時間:2021/05/15 00:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:呂祥誠
研究生(外文):Hsiang-Cheng Lu
論文名稱:高吸水性複合材料之製備與性質研究
論文名稱(外文):STUDIES ON PREPARATION AND PROPERTIES OF THE SUPERABSORBENT MATERIALS
指導教授:李文福李文福引用關係
指導教授(外文):Wen-Fu Lee
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:海泡石複合型材料
外文關鍵詞:sepioliteinterpenetrating polymer network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含兩部分,第一部分為含SA-VP/NIPAAm IPN 熱敏感性高吸水性材料;第2部分為添加海泡石(sepiolite)所製備的高吸水性材料。在第一部分中是利用sodium acrylate (SA)與N-isopropylacrylamide (NIPAAm) 以二步驟法來製備Interpenetrated Networks (IPNs)結構的水膠。製備的SA-VP/NIPAAm(SVN)的IPN 膠體具有高吸水力與溫度感應性。結果顯示添加NIPAAm所製備的IPN水膠做了一系列與溫度相關的實驗中,在超過NIPAAm的critical gel transition solution temperature (CGTT)時,NIPAAm從具有親水性的性質轉換成疏水性質,其膠體也具有明顯的收縮。當IPN膠體中,NIPAAm的含量越高時,其溫度感應性也會更加顯著。測量孔洞直徑的分布上,未添加NIPAAm的SA 膠體明顯的比添加NIPAAm的IPN膠體大且膠體中SA的比例越高,其膠體的孔洞直徑也會較大。最後對膠體在不同高低溫進行溫度反覆的測試,結果顯示NIPAAm含量較高的複合型水膠收縮性最為顯著。
在第二部分,探討具有高親水性的丙烯酸鈉添加具有多孔性的海泡石所製備的高吸水性材料。結果顯示具有催化性的海泡石添加至sodium acrylate(SA)以逆向懸浮聚合時,其膠體聚合反應的時間會明顯縮短,其原因為吸水才具有催化的特性。且在固定時間聚合其產率也比未添加海泡石的產率高。利用DW法測量吸水材,當添加海泡石的所製備的水膠,吸水速率也明顯的加快,海泡石添加量越高,其吸水速率也會隨著海泡石添加量越高而更快的趨勢。
In this study, we discussed the superabsorbent materials. One of the part is SA-VP/NIPAAm (SVN) interpenetrating polymer networks (IPN) gels and the other is SA-sepiolite hydrogels. In part 1, a series of interpenetrating polymer network (IPN) gels with higher swelling ratio and thermosensitivity were synthesized from sodium acrylate (SA) and N-isopropylacrylamide (NIPAAm) by a two-step method. The first step is the synthesis of a series of the poly(sodium acrylate -co- 1-vinyl–2-pyrrolidone) [poly(SA–co-VP)] hydrogels from acrylic acid with 90% degree of neutralization and VP monomer. The second step is synthesis of the poly(SA–co-VP) /poly(NIPAAm) (SVN) IPN gels by immersing the poly(SA–co-VP) gels into NIPAAm, initiator, accelerator, and crosslinker solution to polymerize. The effect of the different molar ratio of SA/VP and the NIPAAm content on the swelling behavior and physical properties for the IPN gels was investigated in this study. Results show that the IPN gels with poly(NIPAAm) network had obviously thermal reversible behavior from thermosensitivity experiment when the temperature over the critical gel transition temperature (CGTT) of poly(NIPAAm). The results from the measurement of diameter distribution also indicated that the pore size inside the poly(SA–co-VP) (SV) gel was larger than that of SVN IPN gel. At the same time, the more the proportion of SA in gels, the larger the pore size diameter. The results also showed that the swelling ratio decrease with increasing of the VP content in the SV gel and obviously decrease in the SVN IPN gel. Finally, the drug release behavior of caffeine and sulfanilamide in the IPN gel system was also investigated.
In part2, preparation and properties of a series of superabsorbent composed of hydrophilic sodium acrylate (SA) containing porous sepiolite were investigated in this study. The results indicated that increase of sepiolite in SA could reduced the reaction time of inverse suspension polymerization because the sepiolite had catalytic property, and the yields of SA-sepiolite gels were higher than SA gels without sepiolite for the same reaction time. Measurement of the swelling rate was carried out by Demand Wettability (DW) method and the results showed that the swelling ratio was increased when the content of sepiolite increased in SA gels.
PART 1
Synthesis and Swelling Characteristic of Thermosensitive Interpenetrating Polymer Network Hydrogels Composed of Poly(Sodium Acrylate-1-Vinyl–2-Pyrrolidinone) and Poly(N-Isopropylacrylamide) by a Two-Step Method.

ABSTRACT 2
1.1 INTRODUCTION 4
1.2 EXPERIMENTAL 7
1.2.1 Materials 6
1.2.2 Preparation of SA monomer Solution 7
1.2.3 Preparation of SV xerogels 8
1.2.4 Preparation of SVN IPN gels 10
1.2.5 Measurement the ratio of NIPAAm in IPN gels 12
1.2.6 Physical properties measurement 12
1.2.7 Measurement of pore size distribution 14
1.2.8 Measurement of swelling kinetics 14
1.2.9 Measurement of deswelling Kinetic 15
1.2.10 Equilibrium swelling ratio at different temperature 15
1.2.11 Swelling-deswelling behavior of the IPN hydrogels 16
1.2.12 Morphologies 16
1.2.13 Drug Release Experiment 16
1.3 RESULTS AND DISCUSSION 18
1.3.1 Effect of NIPAAm content on IPN gels 18
1.3.2 Physical Properties Measurement 20
1.3.3 Pore diameter distribution of the SV hydrogels and SVN IPN gels 22
1.3.4 Swelling behaviors of the SV gels and the SVN IPN gels 27
1.3.5 T Deswelling behaviors of the SVN IPN gels 30
1.3.6 Effects of temperature on swelling ratios of the SVN IPN gels 32
1.3.7 Swelling-deswelling behaviors of SVN IPN gels 34
1.3.8 Morphologies 36
1.3.9 Drug release behaviors of the SVN gels 44
1.4 CONCLUSIONS 47
1.5 REFERENCES 48
PART 2
Studies on the Preparation and Properties of the Composite Hydrogels containing Porous Sepiolite
ABSTRACT 51
2.1 INTRODUCTION 52
2.2 EXPERIMANTAL 55
2.2.1 Materials 55
2.2.2 Preparation of Superabsorbent Polymeric Gels 55
2.2.2.1 Preparation of SA Monomer Solution 55
2.2.2.2 Acid treatment sepiolite 55
2.2.2.3 Preparation of SAAS gels 56
2.2.3 Preparation the artificial of urine 59
2.2.4 Measurement of water absorbency 59
2.2.4.1 Suction filtration method 59
2.2.4.2 Tea bag method 59
2.2.5 Kinetics of Swelling 60
2.2.6 Morphologies 62
2.3 RESULTS AND DISCUSSION 63
2.3.1 FT-IR analysis 63
2.3.2 XRD analysis 65
2.3.3 Effect of sepiolite on the reaction rate 67
2.3.4 Effect of Sepiolite Content on Water-Absorbency 70
2.3.5 Effect of absorption rate for gels 73
2.3.6 Morphologies 77
2.4 CONCLUSIONS 78
2.5 REFERENCES 81
LIST OF TABLES
PART 1
Table 1 The feed composition of SV copolymeric hydrogels 9
Table 2 The feed compositions and yields of SVN IPN hydrogels 11
Table 3 The SVN/ SV ratio and NIPAAm/SV ratio in IPN gels 19
Table 4 Shear moduli and crosslinking densities of the hydrogels 21
PART 2
Table 1. Feed compositions of the SAAS hydrogels 58
Table 2. Water absorbency for SAAS gels in deionized water by Tea bag method and Suction filtration method 71
Table 3. Water absorbency for SAAS in 0.9 wt% NaCl(aq) by Tea bag method 71
Table 4. Water absorbency for SAAS gels in artificial urine by Tea bag method 72
LIST OF FIGURES
PART 1
Figure 1(a) The diameter distribution of SV40 hydrogels 23
Figure 1(b). The diameter distribution of SV20 hydrogels 23
Figure 1(c). The diameter distribution of SV10 hydrogels 24
Figure 1(d). The diameter distribution of SV40N IPN gels 25
Figure 1(e). The diameter distribution of SV20N IPN gels 25
Figure 1(f). The diameter distribution of SV10N IPN gels 26
Figure 1(g). The diameter distribution of SV0N IPN gels 26
Figure 2. The swelling ratios as a function of time for the SV hydrogels at 25℃ 28
Figure 3. The swelling ratios as a function of time for the SVN IPN gels at 25℃ 29
Figure 4. Deswelling profiles of SVN IPN gels at 45℃ 31
Figure 5. Equilibrium swelling ratios of SVN IPN gels at various temperatures 33
Figure 6. Swelling-deswelling behaviors of SVN IPN gels between 25℃ and 45℃ 35
Figure 7. Effect of temperature on swelling ratio by SV40N IPN gels.(a)25℃. (b)30℃. (c)35℃. (d)40℃.(e)45℃.(f)50℃ 37
Figure 8. Effect of temperature on swelling ratio by SV20N IPN gels. (a)25℃. (b)30℃. (c)35℃. (d)40℃.(e)45℃.(f)50℃ 38
Figure 9. Effect of temperature on swelling ratio by SV10N IPN gels. (a)25℃. (b)30℃. (c)35℃. (d)40℃.(e)45℃.(f)50℃ 39
Figure 10. Effect of temperature on swelling ratio by SV0N IPN gels. (a)25℃. (b)30℃. (c)35℃. (d)40℃.(e)45℃.(f)50℃ 40
Figure 11. Effects of temperature on gel diameter of SVN IPN gels 41
Figure 12. Cross-sectional SEM morphologies of SV gels 42
Figure 13. Figure 13. Cross-sectional SEM morphologies of SVN gels 43
Figure 14. Caffeine release profiles of the SVN IPN gels 45
Figure 15. Sulfanilamide release profiles of the SVN IPN gels 46

PART 2
Figure 1. FT-IR spectra of (a) natural sepiolite (b) acid treated sepiolite by 2N HCl for 15h 64
Figure 2. X-ray diffraction patterns of (a) natural sepiolite, (b) acid treated sepiolite by 2N HCl for 15h 66
Figure 3. The yield of the series SAAS hydrogels in 30 min 68
Figure 4. The yields at different time of the series SAAS hydrogels 69
Figure 5. Absorption rate in deionized water for SAAS hydrogels by DW method 74
Figure 6. Absorption rate in 0.9 wt% NaCl(aq) for SAAS hydrogels by DW method 75
Figure 7. Absorption rate in artificial urine for SAAS hydrogels by DW method 76
Figure 8. Scanning electron micrograph for sepiolite (a)~(b)natural sepiolite, (c) ~ (d) acid treatment sepiolite 78
Figure 9. Scanning electron micrograph for SAAS (a)~(b) SAAS 0 (c) ~(d) SAAS 1 (e) ~(f) SAAS 2 (g) ~(h) SAAS 3 (i) ~(j) SAAS 4 79
LIST OF SCHEMES
PART 1
Scheme 1. Preparation IPN gels by two step method 12
PART 2
Scheme 1. Synthetic scheme of the SAAS hydrogels 57
Scheme 2. Schematic equipment for demand wettability method 61
Part 1
(1)U.S. Department of Agriculture. U.S. Pat. 3,981,100 (1961).
(2)Kiatkamjornwonga, S.; Chomsaksakulb, W.; Sonsukc, M. Radiation Physics and Chemistry 2000, 59, 413-427.
(3)Abd El-Rehim H.A. Radiation Physics and Chemistry 2005, 74, 111-117.
(4)Lee, W. F.; Lin, G. H. J Appl Polym Sci 2001, 79, 1665-1674.
(5)Lee, W. F.; Huang, Y. L. J Appl Polym Sci 2001, 81, 1827-1837.
(6)Lee, W. F.; Huang, Y. L. J Polym. Res.2001, 8, 9-15.
(7)Lee, W. F.; Yang, L. G. J Appl Polym Sci 2004, 92, 3422-3429.
(8)Lee, W. F.; Yang, L. G. J Appl Polym Sci 2004, 92, 3666-3674.
(9)Lee, W. F.; Chen, Y. C. J Appl Polym Sci 2004, 94, 2417-2424.
(10)Lee, W. F.; Chen, Y. C. European Polymer Journal 2005, 41, 1605-1612.
(11)Lee, W. F. ; Liu T.-M. J Appl Polym Sci 2006, 100, 4661-4667
(12)Muniz EC, Geuskens G. Macromolecules 2001;34:4480–4.
(13)Dhara D, Rathna GVN, Chatterji PR. Langmuir 2000;16:2424–9.
(14)Qiu Y, Park K. Adv Drug Deliv Rev 2001;53:321–39.
(15)Ju HK, Kim SY, Lee YM. Polymer 2001;42:6851–7.
(16)Wang M, Fang Y, Hu D. React Funct Polym 2001;48:215–21.
(17)Muniz EC, Geuskens G. J Membr Sci 2000;172:287–93.
(18)Lu X, Zhai M, Li J, Ha H. Radiat Phys Chem 2000;57:477–80.
(19)Xian-Zheng Zhang, Da-Qing Wu, Chih-Chang Chu, Biomaterials 25 (2004) 3793–3805
(20)M. Santin, S.J. Huang, S. Iannace, L.ambrosio, L. Nicolais, G. Peluso. Biomaterials 17(1996) 1459-1467.
(21)Xian-Zheng Zhang, Da-Qing Wu, Chih-Chang Chu. Biomaterials 25(2004) 3793-3805.

Part 2
(1)U.S. Department of Agriculture. U.S. Pat. 3,981,100 (1961).
(2)Kiatkamjornwonga, S.; Chomsaksakulb, W.; Sonsukc, M. Radiation Physics and Chemistry 2000, 59, 413-427.
(3)Abd El-Rehim H.A. Radiation Physics and Chemistry 2005, 74, 111-117.
(4)Lee, W. F.; Lin, G. H., J Appl Polym Sci 2001, 79, 1665-1674.
(5)Lee, W. F.; Huang, Y. L. J Appl Polym Sci 2001, 81, 1827-1837.
(6)Lee, W. F.; Huang, Y. L. J Polym. Res.2001, 8, 9-15.
(7)Lee, W. F.; Yang, L. G. J Appl Polym Sci 2004, 92, 3422-3429.
(8)Lee, W. F.; Yang, L. G. J Appl Polym Sci 2004, 92, 3666-3674.
(9)Lee, W. F.; Chen, Y. C. J Appl Polym Sci 2004, 94, 2417-2424.
(10)Lee, W. F.; Chen, Y. C. European Polymer Journal 2005, 41, 1605-1612.
(11)M.R. Weir, W. Kuang, G.A. Facey, C. Detellier, Clays Clay Miner. 50 (2002) 240.
(12)G. Sandı`, R.E. Winans, S. Seifert, K.A. Carrado, Chem. Mater. 14 (2002) 739.
(13)W. Kuang, G.A. Facey, C. Detellier, B. Casal, J.M. Serratosa, E. Ruiz-Hitzky, Chem. Mater. 15 (2003) 4956.
(14)D.A. McKeown, J.E. Post, E.S. Etz, Clays Clay Miner. 50 (2002) 667.
(15)R.L. Frost, Z. Ding, Thermochimica Acta 397 (2003) 119.
(16)G. Tartaglione , D. Tabuani, G. Camino, Microporous and Mesoporous Materials 107 (2008) 161–168
(17)M.A. Aramendia, V. Borau, C. Jimenez, J.M. Marinas, A. Porras, F.J. Urbano, L. Villar, J. Mol. Catal. 94 (1994) 131–147.
(18)S. Li, L. Luo, J. Guo, F. Li, J. Nat. Gas Chem. 10 (2001) 338–348.
(19)A. Corma, J. Perez-Pariente, V. Fornes, A. Mifsud, Clay Miner. 19 (1984) 673–676.
(20)A. Corma, J. Perez-Pariente, J. Soria, Clay Miner. 20 (1985) 467– 475.
(21)A. Corma, R.M. Martin-Aranda, Appl. Catal. A 105 (1993) 271–279.
(22)A. Corma, S. Iborra, S. Miquel, J. Primo, J. Catal. 173 (1998) 315– 321.
(23)Avelino Corma1, Hermenegildo Garc′ıa, Antonio Leyva, Ana Primo, Applied Catalysis A: General 257 (2004) 77–83
(24)Slavica Lazarević, Ivona Janković-Častvan, Dušan Jovanović, Slobodan Milonjić, Djordje Janaćković, Rada Petrović. Applied Clay Science 37 (2007) 47–57.
(25)Suna Balci. Chemical Engineering and Processing 41 (2002) 79–85
(26)Brian R. Shmaefsky, How-To-Do-It - Artificial Urine for Laboratory Testin
(27)Miguel A. V.-R., Mercedes S., Miguel A. B.-M., Juan De D. L.-G. Spectrochimica Acta Part A 52(1996) 1685-1.
(28)Imre Dekany, Laszlo Turi, Antonio Fonseca, Janos B. Nagy, Applied Clay Science 14(1999)141-160.
(29)E. Sabah, M.S. Celik, Sep. Sci. Technol. 37(13) (2002) 3081.
(30)E. Sabah, M.S. Celik, J. Colloid Interface Sci. 251 (1) (2002) 273.
(31)G. Rytwo, D. Trop, C. Serban, Appl. Clay Sci. 20 (2002) 273.
(32)E. Sabah, J. Colloid Interface Sci. 310 (2007) 1-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top