(3.227.0.150) 您好!臺灣時間:2021/05/08 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳柏卿
研究生(外文):Po-Ching Chen
論文名稱:應用恆溫環形核酸增幅法於致病原偵測之效益探討
論文名稱(外文):PERFORMANCE OF LOOP-MEDIATED ISOTHERMAL AMPLIFICATION FOR PATHOGEN DETECTION
指導教授:游吉陽
指導教授(外文):Chi-Yang Yu
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:恆溫環形增幅恆溫環型核酸增幅法致病原偵測
外文關鍵詞:loop-mediated isothermalLAMPpathogens detection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:451
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文回顧了應用恆溫環型核酸增幅法(loop-mediated isothermal amplification, LAMP)於致病原檢測的文獻,並比較其與聚合酶鍊鎖反應(PCR)、RT-PCR、nested PCR及real-time PCR於致病原檢測的專一性及靈敏度。LAMP反應只需利用特殊設計的引子與核酸聚合酶在恆溫(60-65℃)的狀態下,即可快速地擴增出標的核酸。LAMP反應具有非常高的專一性,因為啟始反應需要兩對引子辨認模板核酸的六段序列,才能進行後續反應。另外,LAMP反應不需循環升降溫步驟,故不但所需時間較PCR短且只需簡單的設備例如水浴槽或乾浴槽即可操作。在LAMP反應過程中,會有大量副產物焦磷酸(pyrophosphate)產生,與鎂離子反應後產生白色的焦磷酸鎂(magnesium pyrophosphate)沈澱,可直接肉眼辨識混濁度或以簡單的濁度計測量。若加入螢光染劑如SYBR Green等,目測之靈敏度可與電泳凝膠法相當。自從西元2000年第一篇LAMP技術發表後,已有越來越多應用LAMP來檢測引起人類、動植物、魚類等疾病的病原菌或病毒的報告被發表。在回顧過論文中列出的這些文獻後,我結論出LAMP具有高度的專一性,且其靈敏度優於PCR並與RT-PCR或nested PCR或real-time PCR相當。
This thesis reviewed the articles that applied loop-mediated isothermal amplification (LAMP) to the detection of pathogens, and compared the specificities and sensitivities of LAMP to PCR, reverse transcription PCR, nested PCR, as well as real-time PCR. The LAMP reaction requires a set of four specially designed primers and a DNA polymerase, under isothermal conditions (60-65℃), can rapidly amplify target DNA. The specificity of LAMP is extremely high because the set of four specially designed primers recognize six distinct target DNA sequences which play the role of initiating the follow-up reactions. Comparing to PCR, LAMP has short reaction time because it doesn’t need the thermal cycling steps. Furthermore, simple equipments such as a water bath or heat block are sufficient for the DNA amplification. LAMP reaction yields a large amount of the by-product pyrophosphate ion, which reacts with magnesium ions in the reaction to form white magnesium pyrophosphate precipitate. As a result, real-time monitoring of the LAMP reaction can be achieved by the naked eye or by real-time measurement of turbidity. In addition, the sensitivity of staining LAMP amplicons with fluorescent intercalating dye such as SYBR green equals that of gel electrophoresis method. Since the first report of LAMP in 2000, applications of LAMP for the detection of pathogens of human, animals, agriculture and fishing industry diseases were reported by more and more publications. After reviewing selected articles, I conclude that LAMP is highly specific and the sensitivity of LAMP is superior to PCR, and is comparable to nested PCR and real-time PCR.
ACKNOWLEDGEMENTS I
ENGLISH ABSTRACT II
CHINESE ABSTRACT IV
TABLES OF CONTENTS V
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 HISTORY OF PCR AND ITS DEVELOPMENT 2
2.1 A short history of PCR 2
2.2 Components of the PCR reaction mixture 2
2.3 PCR cycling 3
2.4.1 Reverse transcription PCR (RT-PCR) 5
2.4.2 Nested PCR 7
2.4.3 Real-time PCR 9
CHAPTER 3 LOOP-MEDIATED ISOTHERMAL AMPLIFICATION METHOD 13
3.1 Principle of loop-mediated isothermal amplification 13
3.2 DNA polymerase 18
3.2.1 Bst DNA polymerase 19
3.2.2 BcaBEST DNA polymerase 21
3.2.3 Z-Taq DNA polymerase 21
3.3 LAMP primers 21
3.4 Reaction mixture for a typical LAMP 22
3.5 Analysis 25
CHAPTER 4 APPLICATIONS OF LAMP FOR THE DETECTION OF MICROBES 27
4.1 Detection of microbes which cause human diseases 27
4.2 Detection of microbes which cause animal diseases 32
4.3 Detection of diseases caused by microbes in agriculture and fishing industry 35
CHAPTER 5 APPLICATIONS OF LAMP FOR THE DETECTION OF VIRUSES 40
5.1 Detection of viruses which cause human diseases 40
5.2 Detection of viruses which cause animal diseases 42
5.3 Detection of diseases caused by viruses in agriculture and fishing industry 43
CHAPTER 6 VARIATIONS OF LAMP METHOD 47
6.1 In Situ LAMP for the detection of stxA2 gene 47
6.2 RT-LAMP for the detection of viruses 48
6.3 Specific visual detection of LAMP reactions 50
6.4 LAMP reaction using a nondenatured template 51
CHAPTER 7 CONCLUSIONS 54
REFERENCE 55
APPENDIXES 73
1.Mullis, K., F. Faloona, and S. Scharf. (1986). Specific enzymatic amplification of DNA in vitro. Cold Spring Harb. Symp. Quant. Biol. 51:263–273.
2.Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E63.
3.Tang, Y. W., P. S. Mitchell, M. J. Espy, T. F. Smith, and D. H. Persing. (1999). Molecular diagnosis of herpes simplex virus infections in the central nervous system. J. Clin. Microbiol. 37:2127–2136.
4.Gyllensten, U. B., and H. A. Erlich. (1989). Ancient roots for polymorphism at the HLA-DQ alpha locus in primates. Proc. Natl. Acad. Sci. U S A. 86:9986–9990.
5.Boehm, C. D. (1989). Use of polymerase chain reaction for diagnosis of inherited disorders. Clin. Chem. 35:1843–1848.
6.Hodges, S. A., and M. L. Arnold. (1994). Floral and ecological isolation between aquilegia formosa and aquilegia pubescens. Proc. Natl. Acad. Sci. U S A. 91:2493–2496.
7.Erickson, D. L., B. D. Smith, A. C. Clarke, D. H. Sandweiss, and N. Tuross. (2005). An asian origin for a 10,000-year-old domesticated plant in the Americas. Proc. Natl. Acad. Sci. U S A. 102:18315–18320.
8.Steffan, P., J. A. Vazquez, D. Boikov, C. Xu, J. D. Sobel, and R. A. Akins. (1997). Identification of Candida species by randomly amplified polymorphic DNA fingerprinting of colony lysates. J. Clin. Microbiol. 35:2031–2039.
9.Bustin, S. A., V. Benes, T. Nolan, and M. W. Pfaffl. (2005). Quantitative real-time RT-PCR – a perspective. J. Mol. Endocrinol. 34:597–601.
10.Clementi, M., S. Menzo, P. Bagnarelli, A. Manzin, A. Valenza, and P. E. Varaldo. (1993). Quantitative PCR and RT-PCR in virology. PCR Methods Appl. 2:191–196.
11.Francis, L., N. Desire, W. Rozenbaum, J. C. Nicolas, and V. Marechal. (2000). Quantitative analysis of human herpesvirus 8 viral load using a real-time PCR assay. J. Clin. Microbiol. 38:1404–1408.
12.Xiaoyun, Q., L. Wu, H. Huang, P. E. McDonel, A. V. Palumbo, J. M. Tiedje, and J. Zhou. (2001). Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl. Environ. Microbiol. 67:880–887.
13.Aviel-Ronen, S., C. Q. Zhu, B. P. Coe, N. Liu, S. K. Watson, W. L. Lam and M. S Tsao. (2006). Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues. BMC Genomics 7:312.
14.Liang, X., K. Jensen, and M. D. Frank-Kamenetskii. (2004). Very efficiency template/primer-independent DNA synthesis by thermophilic DNA polymerase in the presence of a thermophilic restriction endonuclease. Biochemistry 43:13459–13466.
15.Aliotta, J. M., J. J. Pelletier, J. L. Ware, L. S. Moran, J. S. Benner, and H. Kong. (1996). Thermostable Bst DNA polymerase I lacks a 3'�_5' proofreading exonuclease activity. Genet. Anal. 12:185–195.
16.Nagamine, K., K. Watanabe, K. Ohtsuka, T. Hase, and T. Notomi. (2001). Loop-mediated isothermal amplification reaction using a nondenatured template. Clin. Chem. 47:1742–1743.
17.Clyde, W., A. Jr. (1993). Clinical overview of typical Mycoplasma pneumoniae infections. Clin. Infect. Dis. 17:S32–S37.
18.Saito, R., Y. Misawa, K. Moriya, K. Koike, K. Ubukata, and N. Okamura. (2005). Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of Mycoplasma pneumoniae. J. Med. Microbiol. 54:1037–1041.
19.Abe, C., K. Hirano, M. Wada, Y. Kazumi, M. Takahashi, Y. Fukasawa, T. Yoshimura, C. Miyagi, and S. Goto. (1993). Detection of Mycobacterium tuberculosis in clinical specimens by polymerase chain reaction and gen-probe amplified mycobacterium tuberculosis direct test. J. Clin. Microbiol. 31:3270–3274.
20.Iwamoto, T., T. Sonobe, and K. Hayashi. (2003). Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol. 41:2616–2622.
21.Mori, Y., T. Hirano and T. Notomi. (2006). Sequence specific visual detection of LAMP reactions by addition of cationic polymers. BMC Biotechnol. 6:3.
22.Boehme, C. C., P. Nabeta, G. Henostroza, R. Raqib, Z. Rahim, M. Gerhardt, E. Sanga, M. Hoelscher, T. Notomi, T. Hase, and M. D. Perkins. (2007). Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J. Clin. Microbiol. 45:1936–1940.
23.Mattoo, S., and J. D. Cherry. (2005). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 18:326–382.
24.Kamachi, K., H. Toyoizumi-Ajisaka, K. Toda, S. C. Soeung, S. Sarath, Y. Nareth, Y. Horiuchi, K. Kojima, M. Takahashi, and Y. Arakawa. (2006). Development and evaluation of a loop-mediated isothermal amplification method for rapid diagnosis of bordetella pertussis infection. J. Clin. Microbiol. 44:1899–1902.
25.Socransky, S. S., and A. D. Haffajee. (1992). The bacterial etiology of destructive periodontal disease: current concepts. J. Periodontol. 63:322–331.
26.Gersdorf, H., A. Meissner, K. Pelz, G. Krekeler, and U. B. Gobel. (1993). Identification of Bacteroides forsythus in subgingival plaque from patients with advanced periodontitis. J. Clin. Microbiol. 31:941–946.
27.Ishihara, K., and H. K. Kuramitsu. (1995). Cloning and expression of a neutral phosphatase gene from Treponema denticola. Infect. Immun. 63:1147–1152.
28.Yoshida, A., S. Nagashima, T. Ansai, M. Tachibana, H. Kato, H. Watari, T. Notomi, and T. Takehara. (2005). Loop-mediated isothermal amplification method for rapid detection of the periodontopathic bacteria Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. J. Clin. Microbiol. 43:2418–2424.
29.Brown, P. D., and S. A. Lerner. (1998). Community-acquired pneumonia. Lancet 352:1295–1302.
30.Rudolph, K. M., A. J. Parkinson, C. M. Black, and L. W. Mayer. (1993). Evaluation of polymerase chain reaction for diagnosis of pneumococcal pneumonia. J. Clin. Microbiol. 31:2661–2666.
31.Kawamura, Y., R. A. Whiley, S. E. Shu, T. Ezaki, and J. M. Hardie. (1999). Genetic approaches to the identification of the mitis group within the genus Streptococcus. Microbiology 145:2605–2613.
32.Seki, M., Y. Yamashita, H. Torigoe, H. Tsuda, S. Sato, and M. Maeno. (2005). Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae. J. Clin. Microbiol. 43:1581–1586.
33.Wilkins, T. D., and D. M. Lyerly. (2003). Clostridium difficile testing: after 20 years, still challenging. J. Clin. Microbiol. 41:531–534.
34.Alfa, M. J., A. Kabani, D. Lyerly, S. Moncrief, L. M. Neville, A. Al-Barrak, G. K. Harding, B. Dyck, K. Olekson, and J. M. Embil. (2000). Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile-associated diarrhea. J. Clin. Microbiol. 38:2706–2714.
35.Kato, H., T. Yokoyama, H. Kato, and Y. Arakawa. (2005). Rapid and simple method for detecting the Toxin B Gene of Clostridium difficile in stool specimens by loop-mediated isothermal amplification. J. Clin. Microbiol. 43:6108–6112.
36.Dunn, B. E., H. Cohen, and M. J. Blaser. (1997). Helicobacter pylori. Clin. Microbiol. Rev. 10:720–741.
37.Minami, M., M. Ohta, T. Ohkura, T. Ando, K. Torii, T. Hasegawa, and H. Goto. (2006). Use of a combination of brushing technique and the loop-mediated isothermal amplification method as a novel, rapid, and safe system for detection of Helicobacter pylori. J. Clin. Microbiol. 44:4032–4037.
38.Narva´ez Rodriguez, I. S., J. S. de Santamaria, M. D. M. A. Rubio, J. M. P. Acevedo, M. P. Jaen, A. M. C. de Orellana, and A. S. Monge. (1995). Cytologic brushing as a simple and rapid method in the diagnosis of Helicobacter pylori infection. Acta Cytol. 39:916–919.
39.Lu, J. J., C. L. Perng, R. Y. Shyu, C. H. Chen, Q. Lou, S. K. F. Chong, and C. H. Lee. (1999). Comparison of five PCR methods for detection of Helicobacter pylori DNA in gastric tissues. J. Clin. Microbiol. 37:772–774.
40.Moody, A. (2002). Rapid diagnostic tests for malaria parasites. Clin. Microbiol. Rev. 15:66–78.
41.Han, E. T., R. Watanabe, J. Sattabongkot, B. Khuntirat, J. Sirichaisinthop, H. Iriko, L. Jin, S. Takeo, and T. Tsuboi. (2007). Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J. Clin. Microbiol. 45:2521–2528.
42.Fukushima, H., and M. Gomyoda. (1991). Intestinal carriage of Yersinia pseudotuberculosis by wild birds and mammals in Japan. Appl. Environ. Microbiol. 57:1152–1155.
43.Horisaka, T., K. Fujita, T. Iwata, A. Nakadai, A. T. Okatani, T. Horikita, T. Taniguchi, E. Honda, Y. Yokomizo, and H. Hayashidani. (2004). Sensitive and specific detection of Yersinia pseudotuberculosis by loop-mediated isothermal amplification. J. Clin. Microbiol. 42:5349–5352.
44.Bromidge, T., W. Gibson, K. Hudson, and P. Dukes. (1993). Identification of Trypanosoma brucei gambiense by PCR amplification of variant surface glycoprotein genes. Acta Trop. 53:107–119.
45.Kuboki, N., N. Inoue, T. Sakurai, F. D. Cello, D. J. Grab, H. Suzuki, C. Sugimoto, and I. Igarashi. (2003). Loop-mediated isothermal amplification for detection of African Trypanosomes. J. Clin. Microbiol. 41:5517–5524.
46.Njiru, Z. K., A. S. Mikosza, T. Armstrong, J. C. Enyaru, J. M. Ndung’u, and A. R. Thompson. (2008). Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS. Negl. Trop. Dis. 2:e147.
47.Sweeney, R. W., R. H. Whitlock, A. E. Rosenberger, and S. A. Herr. (1992). Isolation of Mycobacterium paratuberculosis after oral inoculation in uninfected cattle. Am. J. Vet Res. 53:1312–1314.
48.Secott, T. E., A. M. Ohme, S. Barton, C. C. Wu, and F. A. Rommel. (1999). Mycobacterium paratuberculosis detection in bovine feces is improved by coupling agar culture enrichment to an IS900-specific polymerase chain reaction. J. Vet. Diagn. Investig. 11:441–447.
49.Enosawa, M., S. Kageyama, K. Sawai, K. Watanabe, T. Notomi, S. Onoe, Y.Mori, and Y. Yokomizo. (2003). Use of loop-mediated isothermal amplification of the IS900 sequence for rapid detection of cultured Mycobacterium avium subsp. paratuberculosis. J. Clin. Microbiol. 41:4359–4365.
50.Adachi, K., C. Ueno, and S. Makimura. (1993). Immunosuppression in dogs. Nucleic Acids Res. 28:E63.
51.Ikadai, H., H. Tanaka, N. Shibahara, A. Matsuu, M. Uechi, N. Itoh, S. Oshiro, N. Kudo, I. Igarashi, and T. Oyamada1. (2004). Molecular evidence of infections with Babesia gibsoni parasites in Japan and evaluation of the diagnostic potential of a loop-mediated isothermal amplification method. J. Clin. Microbiol. 42:2465–2469.
52.Kusuda, R., and N. Kitadai. (1993). Hemolysin production by Edwardsiella tarda isolated from eel, Anguilla japonica. Jpn. Soc. Aquacult. Res. 41:251–255.
53.Savan, R., A. Igarashi, S. Matsuoka, and M. Sakai. (2004). Sensitive and rapid detection of edwardsiellosis in fish by a loop-mediated isothermal amplification method. Appl. Environ. Microbiol. 70:621–624.
54.Duguid, J. P., and R. A. North. (1991). Eggs and Salmonella food poisoning : an evaluation. J. Med. Microbiol. 34:65–72.
55.Ohtsuka, K., K. Yanagawa, K. Takatori, and Y. Hara-Kudo. (2005). Detection of salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of salmonella isolates. Appl. Environ. Microbiol. 71:6730–6735.
56.Hunter, P. R., and R. C. A. Thompson. (2005). The zoonotic transmission of Giardia and Cryptosporidium. Int. J. Parasitol. 35:1181–1190.
57.Karanis, P., O. Thekisoe, K. Kiouptsi, J. Ongerth, I. Igarashi, and N. Inoue. Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of cryptosporidium oocysts in fecal and water samples. (2007). Appl. Environ. Microbiol. 73:5660–5662.
58.Karanis, P., I. Sotiriadou, V. Kartashev, C. Kourenti, N. Tsvetkova, and K. Stojanova. (2006). Investigations on Giardia and Cryptosporidium in drinking water supplies of Rostov region (Southern Russia) and Sofia (Bulgaria). Environ. Res. 102:475–481.
59.Rizzo, D. M., M. Garbelotto, J. M. Davidson, G. W. Slaughter, and S. T. Koike. (2002). Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 86:205–214.
60.Tomlinson, J. A., I. Barker, and N. Boonham. (2007). Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Appl. Environ. Microbiol. 73:4040–4047.
61.Ichikawa, T., J. Sakai, Y. Yamauchi, H. Minoda, and M. Usui. (1997). A study of 44 patients with Kirisawa type uveitis. J. Jpn. Opthamol. 41:35.
62.Kaneko, H., T. Iida, K. Aoki, S. Ohno, and T. Suzutani. (2005). Sensitive and rapid detection of herpes simplex virus and Varicella-Zoster virus DNA by loop-mediated isothermal amplification. J. Clin. Microbiol. 43:3290–3296.
63.Khan, G., H. O. Kangro, P. J. Coates, and R. B. Heath. (1991). Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J. Clin. Pathol. 44:360–365.
64.Enomoto, Y., T. Yoshikawa, M. Ihira, S. Akimoto, F. Miyake, C. Usui, S. Suga, K. Suzuki, T. Kawana, Y. Nishiyama, and Y. Asano. (2005). Rapid diagnosis of herpes simplex virus infection by a loop-mediated isothermal amplification method. J. Clin. Microbiol. 43:951–955.
65.Asano, Y., T. Yoshikawa, S. Suga, I. Kobayashi, T. Nakashima, T. Yazaki, Y. Kajita, and T. Ozaki. (1994). Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics 93:104–108.
66.Ihira, M., T. Yoshikawa, Y. Enomoto, S. Akimoto, M. Ohashi, S. Suga, N. Nishimura, T. Ozaki, Y. Nishiyama, T. Notomi, Y. Ohta, and Y. Asano. (2004). Rapid diagnosis of human herpesvirus 6 infection by a novel DNA amplification method, loop-mediated isothermal amplification. J. Clin. Microbiol. 42:140–145.
67.Wyatt, L. S., W. J. Rodriguez, N. Balachandran, and N. Frenkel. (1991). Human herpesvirus 7: antigenic properties and prevalence in children and adults. J. Virol. 65:6260–6265.
68.Suga, S., T. Yoshikawa, T. Nagai, and Y. Asano. (1997). Clinical features and virological findings in children with primary human herpesvirus 7 infection. Pediatrics 99:E4.
69.Yoshikawa, T., M. Ihira, S. Akimoto, C. Usui, F. Miyake, S. Suga, Y. Enomoto, R. Suzuki, Y. Nishiyama, and Y. Asano. (2004). Detection of human herpesvirus 7 DNA by loop-mediated isothermal amplification. J. Clin. Microbiol. 42:1348–1352.
70.Fraser, C., S. Riley, R. M. Anderson, and N. M. Ferguson. (2004). Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101:6146–6151.
71.Poon, L. L., C. S. Leung, K. H. Chan, J. H. Lee, K. Y. Yuen, Y. Guan, and J. S. Peiris. (2005). Detection of human influenza A viruses by loop-mediated isothermal amplification. J. Clin. Microbiol. 43:427–430.
72.Alexander, D. J. (1995). Newcastle disease in countries of the European Union. Avian Pathol. 24:3–10.
73.Pham, H. M., C. Nakajima, K. Ohashi, and M. Onuma. (2005). Loop-mediated isothermal amplification for rapid detection of Newcastle disease virus. J. Clin. Microbiol. 43:1646–1650.
74.Pirjo M. L., P.M. Veijalainen, E. Neuvonen, et al. (1986). Latex agglutination test for detecting feline panleukopenia virus, canine parvovirus, and parvoviruses of fur animals. J. Clin. Microbiol. 23:556–559.
75.Cho, H. S., J. I. Kang, and N. Y. Park. (2006). Detection of canine parvovirus in fecal samples using loop-mediated isothermal amplification. Ind. Vet. J. 18:81.
76.Ronen A., A. Perelberg, J. Abramowitz, M. Hutoran, S. Tinman, I. Bejerano, M. Steinitz, M. kotler. (2003). Efficient vaccine against the virus causing a lethal disease in cultured Cyprinus carpio. Vaccine 21:4677-4684.
77.Soliman, H., and El-Matbouli, M. (2005). An inexpensive and rapid diagnostic method of Koi herpesvirus (KHV) infection by loop-mediated isothermal amplification. J. Virol. Methods 2:83–90.
78.Saski, Y., S. Nagumo. Rapid identification of Curcuma longa and C. aromatica by LAMP. (2007). Biol. Pharm. Bull. 30:2229–2230.
79.Cao, H., Y. Sasaki, H. Fushimi, K. Komatsu. (2001). Molecular analysis of medicinally-used Chinese and Japanese Curcuma based on 18S rRNA gene and trnK gene sequences. Biol. Pharm. Bull. 24:1389-94.
80.Chen, F., W. A. Dustman, and R. E. Hodson. (1999). Microscopic detection of toluene dioxygenase gene and its expression inside bacterial cells in seawater using in situ PCR. Hydrobiologica 401:131–138.
81.Chen, F., B. Binder, and R. E. Hodson. (2000). Flow cytometric detection of specific gene expression in prokaryotic cells using in situ RT-PCR. FEMS Microbiol. Lett. 184:291–296.
82.Maruyama, F., T. Kenzaka, N. Yamaguchi, K. Tani, and M. Nasu. (2003). Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl. Environ. Microbiol. 69:5023–5028.
83.Komar, N. (2000). West Nile viral encephalitis. Rev. Sci. Tech. Off. Int. Epizoot. 19:166–176.
84.Parida, M., P. Guillermo, S. Inoue, F. Hasebe, and K. Morita. (2004). Real-time reverse transcription–loop-mediated isothermal amplification for rapid detection of West Nile virus. J. Clin. Microbiol. 42:257–263.
85.Parida, M. M., S. R. Santhosh, P. K. Dash, N. K. Tripathi, V. Lakshmi, N. Mamidi, A. Shrivastva, N. Gupta, P. Saxena, J. P. Babu, P. V. Rao, and K. Morita. (2007). Rapid and real-time detection of Chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. J. Clin. Microbiol. 45:351–357.
86.Khan, A. H., K. Morita, M. Mdel. C. Parquet, F. Hasebe, E. G. Mathenge, and A. Igarashi. (2002). Complete nucleotide sequence of Chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 83:3075–3084.
87.Okafuji, T., N. Yoshida, M. Fujino, Y. Motegi, T. Ihara, Y. Ota, T. Notomi, and T. Nakayama. (2005). Rapid diagnostic method for detection of mumps virus genome by loop-mediated isothermal amplification. J. Clin. Microbiol. 43:1625–1631.
88.Mori, N., Y. Motegi, Y. Shimamura, T. Ezaki, T. Natsumeda, T. Yonekawa, Y. Ota, T. Notomi, and T. Nakayama. (2006). Development of a new method for diagnosis of rubella virus infection by reverse transcription–loop-mediated isothermal amplification. J. Clin. Microbiol. 44: 3268–3273.
89.Thai, H. T. C., M. Q. Le, C. D. Vuong, M. Parida, H. Minekawa, T. Notomi, F. Hasebe, and K. Morita. (2004). Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42:1956–1961.
90.Poon, L. L., B. W. Wong, K. H. Chan, S. S. Ng, K. Y. Yuen, Y. Guan, and J. S. Peiris. (2005). Evaluation of real-time reverse transcriptase PCR and real-time loop-mediated amplification assays for severe acute respiratory syndrome coronavirus detection. J. Clin. Microbiol. 43:3457–3459.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔