跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑜芳
研究生(外文):Yu-Fang Chang
論文名稱:Monascusruber於大豆基質發酵過程中水解酵素活性與其相關成份之變化
論文名稱(外文):Changes in Some Hydrolytic Enzyme Activity and Related Constitutes during the Solid Fermentation of Monascus ruber on Soybean
指導教授:李綉鈴
指導教授(外文):Shiow-Ling Lee
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:118
中文關鍵詞:酵素活性黃豆紅麴成份分析
外文關鍵詞:Enzyme ActivitySoybeanMonascusConstitutes
相關次數:
  • 被引用被引用:3
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究將紅麴菌Monascus ruber BCRC 31535固態培養於含1 %果糖大豆基質中,並於培養過程中補水40 %之最適培養條件下,探討發酵培養過程中菌株生長、各種酵素活性與成份之變化。結果顯示,於最適培養條件下製備之紅麴黃豆色澤比控制組呈較深紅且豆粒較飽滿;在發酵培養過程中,隨著培養時間之延長,M. ruber之生長、α-amylase、protease、lipase及β-glucosidase之活性皆呈現先上升後下降的趨勢,且最適條件下M. ruber生長及各酵素之活性皆高於控制組者。其中,M. ruber之生長於培養18天時,有最高glucosamine含量,為39.43 mg/g;α-amylase於第10天時測得最高活性為2.47 U/g DW,而protease、lipase及β-glucosidase之活性皆培養18天時有最高含量,分別為23.94 U/g DW、2937.15 U/g DW及106.52 U/g DW;總氮、總醣與粗脂肪含量隨著培養時間而逐漸減少,胺基態氮與還原糖含量則逐漸上升,然以最適培養條件下製備之紅麴黃豆之總氮、總醣與粗脂肪減少量及胺基態氮與還原糖增加量均較控制組高;此外,異黃酮中之daidzein及genistein含量隨著培養時間逐漸增加,而daidzin及genistin含量則逐漸減少。
In this study, growth of Monascus ruber BCRC 31535 as well as changes in enzyme activity and composition in soybeans during the solid culture of M. ruber BCRC 31535 on soybean supplemented with 1 % fructose and 40 % water were examined. Results revealed that the soybean koji prepared with M. ruber BCRC 31535 under optimum condition appeared dark-reddish as compared with control. During the fermentation, the cell mass and activities of α-amylase, protease, lipase and β-glucosidase increased and then dropped with time. Growth and all tested enzyme activities in soybean koji prepared under optimum condition were higher than those of control. The highest content of glucosamine in soybean koji was 39.43 mg/g after cultivation for 18d. The highest activity of α-amylase was 2.47 U/g DW after 10d of cultivation. On the other hand, activities of protease, lipase and β-glucosidase were 23.94 U/g DW, 2937.15 U/g DW and 106.52 U/g DW, respectively, after 18d of cultivation. The contents of total nitrogen, total sugar and crude fat decreased with increasing time. On the other hand, the contents of amino nitrogen and reducing sugars increased during fermentation. The decreasing amounts of total nitrogen, total sugar and crude fat as well as the increasing amounts of amino nitrogen and reducing sugars in soybean koji prepared under optimum conditions were higher than those in control. The amounts of daidzein and genistein increased in the soybean koji with a further decrease of the corresponding aglycons of daidzin and genistin.
中文摘要 I
英文摘要 II
壹、前言 1
貳、文獻回顧3
一、固態醱酵 3
1.1 固態醱酵之定義 4
1.2 固態醱酵之優點 5
二、紅麴的緣起與應用 6
2.1 紅麴菌的特性與分類 9
2.2 紅麴菌的代謝產物 13
2.2.1 紅麴菌之色素 13
2.2.1.1 紅麴菌色素之應用 19
2.2.2. 膽固醇合成抑制劑(monacolins) 19
2.2.3 GABA 22
2.2.4 降血糖物質 23
2.2.5 Dimerumic acid 23
2.2.6 長鏈脂肪酸 24
2.2.7 紅麴中的黴菌毒素— Citrinin 24
三、大豆 30
3.1 大豆之營養成份 31
3.2 大豆之保健功能 31
3.3 異黃酮 34
3.4 大豆及其製品中異黃酮素之含量 35
四、大豆發酵食品 38
4.1 天貝 39
4.2 納豆 40
4.3 Kinema 41
4.4 Thuanao 41
五、各種大豆發酵食品製成中之成份與酵素活性變化 42
5.1 以不同菌種於大豆基質之培養過程中,成份與酵素活性變化 42
5.2 以紅麴菌於不同基質之培養過程中,成份與酵素活性變化 46
參、材料與方法 50
一、實驗材料 50
1.1 菌種 50
1.2 培養基 50
1.3 實驗藥品 50
1.4 實驗儀器 51
二、實驗方法 52
2.1 菌株保存 52
2.2 接種源之製備 52
2.3 紅麴黃豆之固態培養 52
三、分析方法 54
3.1. 水份含量之測定 54
3.2. Cell Mass之測定 54
3.3. 成份分析 55
3.3.1 總氮之測定 55
3.3.2 粗脂肪之測定 56
3.3.3. 胺基態氮之測定 56
3.3.4 總醣之測定 57
3.3.5.還原糖之測定 57
3.4 酵素活性測定 58
3.4.1 酵素液之製備 58
3.4.2 αamylase活性之測定 58
3.4.3 protease活性之測定 59
3.4.4 lipase之活性測定 59
3.4.5 βglucosidase之活性測定60
3.5 異黃酮之測定 60
3.5.1 異黃酮標準曲線之製作60
3.5.2 HPLC之分析條件61
3.5.3 紅麴黃豆中異黃酮之萃取方法61
3.5.4 紅麴黃豆樣品中異黃酮之定量61
3.6 統計分析 62
肆、結果與討論 63
一、M. ruber BCRC 31535培養於大豆基質時,紅麴黃豆外觀及水份含量變化 63
二、M. ruber BCRC 31535發培養於大豆基質上之生長66
三、M. ruber BCRC 31535培養於大豆基質上之各種成份與酵素活性之變化 68
3.1 總氮與胺基態氮含量之變化68
3.2 蛋白酶活性之變化 71
3.3 總醣與還原糖含量之變化73
3.4 α-澱粉酶活性之變化74
3.5 粗脂肪含量及脂解酶活性之變化79
3.6 異黃酮含量之變化 82
3.7 β-葡萄糖苷酶活性之變化 85
伍、結論 89
陸、參考文獻 91
于守洋、崔洪斌。2003。新世紀保健食品全集。九州圖書。
中澤亮治、佐藤喜吉。1930。台灣產紅麴中のMonascus に就て。日本農藝化學會誌。6: 352-356。
玉田英明。1988。紅麴各種調味料之應用。食品及科學,July: 96-99。
田 甜。2006。紅麴菌於黃豆基質上之生長及monacolin k之產生。私立大同大學生物工程研究所碩士論文。台北。台灣。
李秀、賴滋漢、柯文慶編。1976。食品分析與檢驗。富林出版社。
李昭蓉。1997。漫談紅麴菌。食品工業,29: 33-39。
李淑芬。1997。鹼性發酵食品。食品工業月刊,29(8): 17-25。
李俊霖。2002。提高紅麴中 monacolin K、GABA 與降低 citrinin 生成量之研究。國立台灣大學農業化學研究所碩士論文。台北。台灣。
呂韋辰。2002。黑豆蒸煮與機械製麴之研究。國立中興大學食品科學系碩士論文。台中。台灣。
吳振強主編。2006。固態發酵技術與應用。化學工業出版社。
林讚峯。1983。紅麴菌的鑑定及實用分類法。製酒科技專論彙編。5: 104-113。
林讚峯、黃正財。1983。紅麴菌釀造性質之研究(一)澱粉水解酵素。酒類試驗所研究年報。72: 157-167。
林讚峯。1986。紅麴菌次級代謝物的經濟性評估及增產策略。製酒科技專論彙編。8: 81-99。
林讚峰。1992。紅麴菌研究發展之演進。科學農業,40(3~4): 193-198。
林讚峰。1993。液體紅麴釀製新型酒類(一)釀酒用紅麴小規模培養條件之探討。酒類試驗所研究年報。82: 59-64。
林讚峰。1995。紅麴菌培養工藝及紅麴應用之演進。製酒科技專論彙編。17: 156-168。
周文玲。1992。紅麴菌發酵東方式乾酪之研究。國立台灣大學畜牧學研究所碩士論文。台北。台灣。
卓佩蓉。2002。大豆麴β-Glucosidase特性之探討。國立嘉義大學生物科技研究所碩士論文。嘉義。台灣。
洪裕翔。2006。黑豆麴之抗致突變性及其作用機制。國立臺灣大學食品科技研究所碩士論文。台北。台灣。
美國黃豆出口協會台北辦事處,http://www.asaim.org.tw。
高毓瑛。2002。食品中基因改造大豆成分檢測方法之建立。國立屏東科技大學食品科學系碩士論文。屏東。台灣。
徐岩主譯。2006。發酵食品微生物學。藝軒圖書出版社。
郭淑姿。2003。黑豆納豆最適加工條件之探討。私立中國文化大學生活應用科學研究所碩士論文。台北。台灣。
許紹龍發行。1990。本草綱目。隆泉書局。
敏濤、瑤卿、時文、林華。2004。豆製品治病養生妙方。林鬰文化。
陳幸玲。1994。紅麴發酵乾酪之熟成研究。國立台灣大學畜產研究所碩士論文。台北。台灣。
陳彥霖、李昭蓉、陳建州、袁國芳。1998。紅麴菌種的研究開發與應用。食工業月刊,30: 1-10。
陳彥霖。1999。紅麴與高血壓。科學與技術,32(12): 54-59。
陳洪章、李佐虎,2002。固態發酵新技術及其反應器的研製。化工進展,21(1): 37-42。
陳威銘。2003。利用紅麴菌醱酵生產機能性魚肉產品之新技術。國立台灣海洋大學食品科學系碩士論文。基隆。台灣。
陳慈棻。2003。蛋白酶水解脫脂大豆粉及其水解液特性分析。國立台灣海洋大學食品科學系碩士論文。基隆。台灣。
陳祺欣。2005。紅麴土司之品質評估及其抗氧化性質。國立中興大學食品科學系碩士論文。台中。台灣。
陳君婷。2006。以Bacillus spp.發酵蒸煮大豆探討其發酵期間納豆激酶活性與異黃酮含量變化之研究。國立嘉義大學食品科學系碩士論文。嘉義。台灣。
張蕙玲。2001。紅麴薏仁之呈味品質、抗氧化性質及其貯藏安定性。國立中興大學食品科學系碩士論文。台中。台灣。
楊嚴俊、錢和、劉杰、佘曉雷、王淼編譯。2005。食品分析。藝軒圖書出版社。台北。188-189。
詹千慧。2006。納豆之產製及降血脂功能性評估。國立嘉義大學食品科學系碩士論文。嘉義。台灣。
潘子明、李俊霖。2002。紅麴保健食品。生物產業Bioindustry,13(3): 488-494。
潘子明。2005。真菌保健食品─紅麴製品介紹及國內研究現況。農業生技產業季刊。3: 28-36。
劉毓秀。1990。不同菌酛釀造豆腐乳時之一些生化變化。國立台灣大學食品科技研究所碩士論文。台北。台灣。
劉毓蕙。2004。水解蛋白的特性及應用。食品工業。30(3): 19-24。
錢香伶。2004。乳酸菌與雙叉桿菌發酵豆奶中異黃酮素含量之變化。國立台灣大學食品科技研究所碩士論文。台北。台灣。
歐宗信。2005。味噌在不同醱酵條件過程中生物胺的產生及各項物理化學性質之探討。國立嘉義大學食品科學系碩士論文。嘉義。台灣。
戴蔭芳、劉成軍、張超良、曹慶榮、李保真。1995。藥用蔬果。度假出版社。86-90。
蘇遠志。2001a。奇妙的紅麴。元氣齋出版社出版。
蘇遠志。2001b。紅麴製品介紹及國內研究現況。機能性醱酵製品研討會。67-112。
蘇遠志、陳文亮、方鴻學、翁浩慶、王文祥。1970。紅麴菌(Monascus anka)之菌學研究。中國農業化學會誌,8: 46-54。
蘇遠志、黃健雄。1976。紅麴色素之生產研究。中國農業化學會誌,14: 45-58。
Aniya, Y., Ohtani, I. I., Higa, T., Miyagi, C., Gibo, H., Shimabukuro, M., Nakanishi, H. and Taira, J. 2000. Dimerumic acid as and antioxidant of the mold, Monascus anka. Free Radical Biology & Medicine. 28(6): 999-1004.
Aniya, Y., Yokomakura, T., Yonamine, M., Shimada, K., Nagamine, T., Shimabukuro, M. And Gibo, H. 1999. Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats. General Pharmacology. 32: 225-231.
AOAC. Official Methods of Analysis, 16th ed.: Association of Official Analytical Chemists: Washington, DC. 1995.
Aykroyd, W. R. and Doughty, J. 1964. Legumes in Human nutrition, FAO Nutritional Studies No. 19, Rome, Italy.
Babitha, S., Soccol, C. R. and Pandey, A. 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. 98: 1554-1560.
Barnes, S. 1995. Effect of genistein on in vitro and in vivo models of cancer. The Journal of Nutrition. 125: 777S-783S.
Barnes, S., Coward, L., Kirk, M. and Sfakianos, J. 1998. HPLC-mass spectrometry analysis of isoflavones. Proceedings of the Society for Experimental Biology and Medicine. 217: 254-262.
Blanc, P. J., Laussac, J. P., Bars, J. L., Bars, P. L., Loret, M. O., Santerre, A. L. and Goma, G. 1995. Characterization of monascidin A from Monascus as citrinin. International Journal of Food Microbiology. 27: 201-213.
Blanc, P. J., Loret, M. O., Santerre, A. L., Pareilleux, A., Prome, D., Prome, J. C., Laussac, J. P. and Goma, G. 1994. Pigments of Monascus. Journal of Food Science. 59(4): 862-865.
Bridge, P. D. and Hawksworth. 1985. Biochemical tests as an aid to the identification of Monascus species. Letters in Applied Mycology. 1: 25-29.
Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G. and Ros, R. O., 2005. Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology. 37: 648-6454.
Chen, H. Z. 1992. Advances in solid-state fermentation. Research and Application of Microbiology. 3: 7-10.
Chiou, R. Y.-Y. and Cheng, S.-L. 2001. Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. Journal of Agricultural and Food Chemistry. 49: 3656-3660.
Cicero, A. F.G., Brancaleoni, M., Laghi, L., Donati, F. and Mino M. 2005. Antihyperlipidaemic effect of a Monascus purpureus brand dietary supplement on a large sample of subjects at low risk for cardiovascular disease: a pilot study. Complementary Therapies in Medicine. 13: 273-278.
Cos, P., Calomme, M., Sindambiwe, J.B., De, B.T., Cimanga, K., and Pieters, L. 2001. Cytotoxicity and lipid peroxidation-inhibiting activity of flavonoids. Planta Medica. 67: 515-519.
Couto, S. R. and Sanromán, M. Á. 2006. Application of solid-state fermentation to food industry─A review. Journal of Food Engineering. 76: 291-302.
Coward, L., Barnes, N. C., Setchell, K. D. R. and Barnes, S. 1993. Genistein, daidzein, and their β-glucoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. Journal of Agricultural and Food Chemistry. 41: 1961-1967.
Dakwa, S., Sakyi-Dawson, E., Diako, C., Annan, N. T. and Amoa-Awua, W. K. 2005. Effect of boiling and roasting on the fermentation of soybeans in to dawadawa (soy-dawadawa). International Journal of Food Microbiology. 104: 69-82.
Daroit, D. J., Silveira, S. T. Hertz, P. F. and Brandelli, A. 2007. Production of extracellularβ-glucosidase by Monascus purpureus on different growth substrates. Process Biochemistry. 42: 904-908.
Desgranges, C., Vergoignan, C., Georges, M. And Durand, A. 1991. Biomass estimation in solid state fermentation. Appl Microbiol Biotechnol. 35: 200-205.
Dubois, M., Gliies, K. A., Hamilton, J. K., Rebers, P. A. and Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28(3): 350-356.
Durand, A. 2003. Bioreactor designs for solid state fermentation. Biochemical Engineering Journal. 13: 113-125.
Eldridge, A. C. and Kwolek, W. F. 1983. Soybean isoflavones: effect of environment and variety on composition. Journal of Agricultural and Food Chemistry. 31: 394-396.
Endo, A. 1979. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. The Journal of Antibiotics. 32: 852-854.
Esaki, H., Onozaki, H., and Osawa, T. 1994. Antioxidative activity of fermented soybean products. In: Huang MT, editor. Food phytochemicals for cancer prevention I, fruits and vegetables. Washington, D.C.: American Chemical Society. P353-360.
Esaki, H., Watanabe, R., Onozaki, H., Kawakishi, S. and Osawa, T. 1999. Formation mechanism for potent antioxidative o-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi. Bioscience, Biotechnology, and Biochemistry. 63: 851-858.
Farmakalidis, E. and Murphy, P. A. 1985. Isolation of 6"-O-acetylgenistin and 6"-O-acetyldaidzin from toasted defatted soyflakes. Journal of Agricultural and Food Chemistry. 33: 385-389.
Franke, A. A., Hankin, J. H., Yu, M. C., Maskarinec, G., Low, S.-H. and Custer, L. J. 1999. Isoflavone Levels in soy foods consumed by multiethnic populations in Singapore and Hawaii. Journal of Agricultural and Food Chemistry. 47: 977-986.
Fred, B. 2002. Soya isoflavone: a new and promising ingredient for the health foods sector. Food Research International. 35: 187-193.
Fukutake, M., Takahshi, M., and Ishida, K. 1996. Quantification of genistein and genistin in soybean and soybean products. Food and Chemical Toxicology. 34:457-461.
György, P., Maurata, K., and Ikehara, H. 1964. Antioxidantsisolated from fermented soybeans (Tempeh). Nature. 203: 870-872.
Han, B.-Z., Ma, Y., Rombouts, F. M. and Nout, M. J. R. 2003. Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during sufu pehtze preparation. Food Chemistry. 81:27-34.
Hawksworth, G., Drasar, B. S. and Hill, M. J. 1971. Intestinal bacteria and the hydrolysis of glycosidic bonds. Journal of Medical Microbiology. 4: 451-459.
Hawksworth, D. L. and Pitt, J. I. 1983. A new taxonomy for Monascus species based on cultural and microscopical characters. Australian Journal of Botany. 31: 51-61.
Hernández, M. S., Rodriguez, M. R., Guerra, N. P. and Roses, R. P. 2006. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. Journal of Food Engineering. 73: 93-100.
Hiroi, T., Takahasi, T., Sima, T., Suzuki, T., Tsukioka, M. and Ogasawara, N. 1981. Production of red-koji in solid culture. Nippon Nogeikagaku Kaishi 55(1): 1∼6.
Hopwood, D.A. and Sherman, D.H. 1990. Molecular geneties of polyketides and its comparison to fatty acid biosynthesis. Annual Review of Genetics. 24: 37-66.
Ikeda, R., Ohta, N., and Watanabe, T. 1995. Changes of isoflavones at various stages of fermentation in defatted soybeans. Nippon Shokuhin Kagaku Kogaku Kaishi. 42(5): 322-327.
Juzlova, P., Martinkova, L. and Kren, V. 1996a. Secondary metabolites of the fungus Monascus: a review. Journal of Industrial Microbiology. 16: 163-170.
Juzlova, P., Rezanka, T., Martinkova, L. and Kren, V. 1996b. Long-chain fatty acids from Monascus purpureus. Phytochemistry. 43(1): 151-153.
Kennedy, A. R. 1995. The evidence for soybean products ascancer preventive agents. The Journal of Nutrition. 125: 733S-743S.
Kim, S.-L., Berhow, M. A., Kim J.-T., Chi H.-Y., Lee, S.-J. and Chung, I.-M. 2006. Evaluation of soyasaponin, isoflavone, protein, lipid, and free sugar accumulation in developing soybean seeds. Journal of Agricultural and Food Chemistry. 54: 10003-10010.
Kuba, M., Shinjo, S. and Yasuda, M. 2004. Antihypertensive and hypocholesterolemic effects of tofuyo in spontaneously hypertensive rats. Journal of Health Science. 50(6): 670-673.
Lee, I.-H. and Chou, C.-C. 2006. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. Journal of Agricultural and Food Chemistry. 54: 1309-1314.
Li, C., Zhu, Y., Wang, Y., Zhu, J. S., Chang, J. and Kritchevsky, D. 1998. Monascus purpureus-fermented rice (red yeast rice): a natural food product that lowers blood cholesterol in animal models of hypercholesterolemia. Nutrition Reasearch. 18(1): 71-81.
Lian, X., Wang, C. and Guo, K. 2007. Identification of new red pigments produced by Monascus ruber. Dyes and Pigments. 73: 121-125.
Lim, H.-S., Yoo, S.-K., Shin, C.-S. and Hyun, Y.-M. 2000. Monascus red pigment overproduction by coculture with recombinant Saccharomyces cerevisiae sereting glucoamylase. The Journal of Microbiology. 38(1): 48-51.
Lin, T.F. and Demain, A.L. 1991. Effect of nutrition of Monascus sp. on formation of red pigments. Applied Microbiology and Biotechnology. 36: 70-75.
Lin, T.F., Yakushijin, K., Buchi, G.H. and Demain, A.L. 1992. Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J Ind Microbiol. 9: 173-179.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall R. J., 1951. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry. 193: 265-275.
Mahungu, S. M., Diaz-Mercado, S., Li, J., Schwenk, M., Singletary, K. And Faller, J. 1999. Stability of isoflavones during extrusion processing of corn/soy mixture. Journal of Agricultural and Food Chemistry. 47: 279-284.
Matsuda, S., Norimoto, F., Matsumoto, Y., Ohba, R., Teramoto, Y., Ohta, N., and Ueda, S. 1994. Solubilization of a novel isoflavone glucoside- hydrolyzing β-glucosidase from Lactobacillus casei subsp. Rhamnosus. Journal of Fermentation and Bioengineering. 77: 439-441.
Matsuura, M., and Obata, A. 1993. β-Glucosidase from soybeans hydrolyze daidzein and genistein. Journal of Food Science. 58(1): 144-147.
Matsuura, M., Obata, A., and Fukushima, D. 1989. Objectionable flavor of soy milk developed during the soaking of soybeans and its control. Journal of Food Science. 54(3): 602-605.
Matsuura, M., Sasaki, J., and Murao, S. 1995. Studies on β- Glucosidase from soybean that hydrolyze daidzin and genistin isolation and characterization of an isozyme. Bioscience, Biotechnology, and Biochemistry. 59(9): 1623-1627.
Messina, M. J., Persky, V., Setchell, K. D. R., and Barnes, S. 1994. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutrition and Cancer 21: 113-131.
Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31(3): 426-428.
Nagata, C., Takatsuka, N., Kawakami, N., and Shimizu, H. 2001. Soy product intake and hot flashes in Japanese women: results from a community-based prospective study. American Journal of Epidemiology. 153: 790-793.
Nout, M.J.R. and Kiers, J.L. 2005. Tempe fermentation, innovation and functionality: update into the third millenium. Journal of Applied Microbiology. 98: 789-805.
Nozaki, H., Date, S., Kondo, H., Kiyohara, H. and Nakayama, M. 1991. Ankalactone, a new α,β-unsaturated γ-lactone from Monascus anka. Agricultural and Biological Chemistry. 55: 899-900.
Ohta, T. 1986. Natto. In: Reddy, N. R., Pierson, M. D. and Salunkhe, D. K. (Eds.). Legume-based fermented foods. CRC Press, Boca Roton, FL, USA, 85-93.
Omafuvbe, B. O., Shonukan, O. O. and Abiose, S. H. 2000. Microbiological and biochemical changes in the traditional fermentation of soybean for ‘soy-daddawa’-Nigerian food condiment. Food Microbiology. 17: 469-474.
Pandey, A. 1992. Recent Process Developments in solid-state fermentation. Process Biochemistry. 27: 109-117.
Pandey, A., Soccol, C. R. and Mitchell, D. 2000. New developments in solid state fermentation: I-bioprocesses and produsts. Process Biochemistry. 35: 1153-1169.
Ride, J. R. and Drysdale, R. B. 1972. A rapid method for the chemical estimation of filamentous fungi in plant tissue. Physiological Plant Pathology. 2: 7-15.
Ruiz-Terán, F. and Owens, J. D. 1996. Chemical and enzymic changes during the fermentation of bacteria-free soya bean tempe. Journal of the Science of Food and Agriculture. 71: 523-530.
Sardjono, Zhu, Y. and Knol, W. 1998. Comparison of fermentation profiles between lupine and soybean by Aspergillus oryzae and Aspergillus sojae in solid-state culture systems. Journal of Agricultural and Food Chemistry. 46: 3376-3380.
Sarkar, P.K., Cook, P.E. and Owens, J.D. 1993. Bacillus fermentation of soybeans. World Journal of Microbiology and Biotechnology. 9: 295-299.
Sarkar, P.K., Tamang, J.P., Cook, P.E. and Owens, J.D. 1994. Kinema-a traditional soybean fermented food: proximate composition and microflora. Food Microbiology. 11: 47-55.
Sarkar, P.K., Jpnes, L.J., Craven, G.S., Somerset, S.M. and Palmer, C. 1997. Amino acid profiles of kinema, a soybean-fermented food. Food Chemistry. 59: 69-75.
Sheih, C., Wu, H.Y., Lai, Y.J. and Lin C.F. 2000. Preparation of high free radical scavenging temp by a newly isolated Rhizopus sp. R-69 from Indonesia. Food Science and Agricultural Chemistry. 2(1): 35-40.
Snyder, H.E. and Kwon, T.W. 1987. Soybena Utilization. AVI Book, New York.
Soccol, C. R. and Vandenberghe, L. P.S. 2003. Overview of spplied solid-state fermentation in Brazil. Biochemical engineering Journal. 13: 205-218.
Somekawa, Y., Chiguchi, M., Ishibashi, T., and Aso, T. 2001. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol. 97:109-115.
Sparringa, R. A. and Owens, J. D. 1999. Protein utilization during soybean tempe fermentation. Journal of Agricultural and Food Chemistry. 47: 4375-4378.
Steinkraus, K.H. 1995. Indigenous fermented food involving an alkaline fermentation. In: Steinkraus, K.H. (Ed.), Handbook of Indigenous Fermented Foods. Marcel Dekker, New York, 349-362.
Su, N.-W., Wang, M.-L., Kwok, K.-F. and Lee, M.-H. 2005. Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy souce koji. Journa of Agricultural and Food Chemistry. 53: 1521-1525.
Sue, M., Ishihara, A., and Iwamura H. 2000. Purification and characterization of a β-glucosidase from rye (Secale cereale L.) seedlings. Plant Science. 155: 67-74.
Sumi, H., Hamada, H., Tsushima, H., Mihara, H. and Muraki, H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111.
Sumi, H., Yatagai, C. and Sumi, A. 1999. Superoxide radical scavenging enzymes detected in the fermented soybean natto. Journal of the Brewing Society of Japan. 94: 1016-1018.
Suryanarayan, S. 2003. Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience. Biochemical Engineering Journal. 13: 189-195.
Taira, J., Miyagi, C. and Aniya, Y., 2002. Dimerumic acid as an antioxidant from the mold, Monascus anka: the inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochemical Pharmacology. 63: 1019-1026.
Tamang, J.P., Sarker, P.K. and Hesseltine, C.W. 1988. Traditional fermented food and beverages of darijeeling and sikkim-a review. Journal of the Science of Food and Agriculture. 44: 375-385.
Tamura, Y. and Takenawa, T. 1999. Antioxidative activity of water soluble extracts from okara fermented with Bacillus natto and Rizopus oligosporus. Nippon Shokuhin Kogyo Gakkaishi. 46: 561-569.
Tsangalis, D., Ashton, J.F., Mcgill, A.E.J. and Shah, N.P. 2002. Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase- producing bifidobacteria. Journal of Food science. 67(8): 3104-2113.
Tseng, Y.Y., Chen, M.T. and Lin, C.F. 2000. Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. Journal of Applied Microbiology. 88: 31-37.
Tsukamoto, C., Shimada, S., Igita, K., Kudou, S., Kokubun, M., Okubo, K. and Kitamura, K. 1995. Factors affecting isoflavone content is soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. Journal of Agricultural and Food Chemistry. 43: 1184-1192
van Tieghem, M. P. 1884. Monascus, genre nouveau de l’ordre des ascomycetes. Bulletin de la Société Botanique de France. 31: 226-231.
Wang H.J. and Murphy P.A. 1994a. Isoflavone composition of American and Japanese Soybean in Iowa: Effects of variety, corp year and location. Journal of Agricultural and Food Chemistry. 42:1674- 1677.
Wang H.J. and Murphy P.A. 1994b. Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry. 42:1666- 1673.
Wang, H.-J. and Murphy, P. A. 1996. Mass balance study of isoflavones during soybean processing. Journal of Agricultural and Food Chemistry. 44(8): 2377-2383.
Wang, J.J., Lee, C.L. and Pan, T.M. 2003. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. Journal of Industrial Microbiology & Biotechnology. 30: 669-676.
Wangen, K. E., Duncan, A. M., Xu, X., and Kurzer, M. S. 2001. Soy isoflavones improve plasma lipids in normocholesterolemia and mildly hypercholesterolemia postmenopausal women. American Journal of Clinical Nutrition. 73: 225-231.
Wei, Q.-K., Chen, T.-R. and Chen, J.-T. 2008. Use of Bacillus subtilis to enrich isoflavone aglycones in fermented natto. Journal of the Science of Food and Agriculture. 88: 1007-1011.
Wei, W., Li, C., Wang, Y., Su, H., Zhu, J. and Kritchevsky, D. 2003. Hypolipidemic and anti-atherogenic effects of long-term cholestin (Monascus purpureus-fermented rice, red yeast rice) in cholesterol fed rabbits. Journal of Nutritional Biochemistry. 14: 314-318.
Welling, P. G. 1986. First-pass metabolism, enterohepatic circulation, and physicochemical factors affecting absorption. In: Wdklling PG editor, American Chemical Society, Washington, DC. Pharmacokinetics-Processes and Mathematics. pp. 35-44.
Xu, X., Harris, K. S., Wang, H. J., Murphy, P. A. and Hendrich, S. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. The Journal of Nutrition. 125: 2307-2315.
Yasuda, M., Uechi, G. and Miyazato, K. 1983. Production of koji with Monascus sp. for Tofuyo-manufacturing. Nippon Shokuhin Kogyo Gakkaishi. 30(2): 63∼67.
Yasuda, M., Shimabukuro, M. and Kikuchi, S. 1991. Production, purification and properties of acid proteinase from genus Monascus. Nippon Shokuhin Kogyo Gakkaishi. 38(10): 954-961.
Yasuda, M., Matsumoto, T., Sakaguchi, M. and Kobamoto, N. 1993. Studies on manufacturing of tofuyo in Okinawa. VIII. Changes in chemical components of tofuyo prepared by Monascus fungus during fermentation. Nippon Shokuhin Kogyo Gakkaishi. 40(5): 331-338.
Yasukawa, K., Takashin, M., Natori, S., Yamazaki, M., Takeuchi, M. and Takido, M. 1994. Azoplpone inhibiot tumor promotion by 12-O-tetrade-canoylphorbol-13-acetate. Oncology. 45: 108-112.
Yokotsuka, T. 1985. Fermented protein foods in the Orient, with emphasis on shoyu and miso in Japan, in Microbiology of Fermented Foods. Vol. 1(ed. B.J.B. Wood), Elsevier Applied Science Publishers, London, pp. 197-247.
Yong, F. M. and Wood, B.J.B. 1974. Microbiology and biochemistry of soy sauce fermentation. Advances in Applied Microbiology. 17: 157-194.
Zhang, J.-H., Tatsumi, E., Fan, J.-F. and Li, L.-T. 2007. Original article: Chemical components of Aspergillus-type douche, a Chinese traditional fermented soybean product, change during the fermentation process. International Journal of Food Science and Technology. 42: 263-268.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top