跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范晉獅
研究生(外文):Chin-Shih Fan
論文名稱:光纖螢光感測器於溫度應用及過氧化氫的檢測
論文名稱(外文):A FIBER-BASED FLUORESCENCE SENSOR FOR TEMPERATURE APPLICATION AND HYDROGEN PEROXIDE DETECTION
指導教授:蔡五湖
指導教授(外文):Woo-Hu Tsai
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:75
中文關鍵詞:螢光過氧化氫光纖
外文關鍵詞:fiber sensorfluorescence
相關次數:
  • 被引用被引用:1
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
螢光原理被廣泛的應用在化學及生物的特性和分子量級的偵測上。近年來在食品上出現大量黑心產品,其中包括食物漂白劑的濫用,嚴重危害人體健康。基於此原因,我們利用螢光的特性作為感測基礎,並且開發一個以光纖為感測架構針對過氧化氫(雙氧水)濃度的感測器。
在我們的實驗中利用研磨技術在多模態光纖(600μm)上研磨一個平拋面,並且在光纖研磨端面,鍍上一層鋁薄膜作為反射式的結構,目的是減少螢光訊號的損失。再搭配sol-gel技術調配螢光溶膠。最後利用旋轉塗佈機將螢光溶膠塗佈在平拋面上完成了感測器,在激發光源上我們採用高強度的近紫外光LED燈(波長為420nm),不同以往的雷射光源,以簡單便利便可達到不錯的效果。在此實驗中,我們利用螢光對溫度的特異性,設計了一個溫度感測器。其量測範圍在4℃到100℃有很好的穩定性。我們也利用化學反應原理設計了一個過氧化氫(雙氧水)的濃度感測器可以區分3% 到35%濃度。在未來的工作中,除了改善感測器的靈敏度外,我們也將更近一步的以量測生物樣本為目標。
The theory of fluorescence is broadly applied to the chemical detection and the biomedical engineering. In recent years, in Taiwan, many people use hydrogen peroxide (H2O2) as bleacher in the food treatment in order to make the appearance of the food better. However, it is harmful to health of the consumer that most over-the-counter peroxide solutions are ingested, so we develop a fiber-based fluorescence sensor to detect the concentration of hydrogen peroxide using the property of fluorescence.
In this study, we have to polish the side surface of an optical fiber (multi-mode) and utilized the evaporation Coater to coat a metal thin film(Al) on the fiber end faucet and then prepare to coat the fluorescent sol-gel on the polished surface. After the BPEA film is coated, a near-UV LED is applied to excite the BPEA film and an OSA is used to monitor the peak of fluorescence spectrum. Finally, we will carry out the experiments for the temperature measurement and different concentrations of H2O2 solutions detection.
In the results that the fluorescence intensity of the sensor in temperature measurement is a function of the temperature with the linear response region is about from 4℃ to 100℃ and the thermal hysteresisratio is about 2.77%. In the measurement of concentration of hydrogen peroxide, the fluorescence emission increases versus the concentration of hydrogen peroxide increases.
In the future work, we will reform the technology of BPEA so-gel or fabricate the second structure on the polished surface to improve the sensitivity of temperature sensor and the concentration of hydrogen peroxide sensor better.
CONTENTS
CONTENTSACKNOWLEDGEMENTS i
ENGLISHABSTRACT ii
CHINESE ABSTRACT iV
CONTENTS V

CHAPTER
I INTRODUCTION 1
II THEORY 7
2.1 Introduction 7
2.2 Theory of Jabloski energy diagram 7
2.3 Theory of side-polished fiber 14
2.4 Theory of sol-gel technology 18
III FABRICATION AND EXPERIMENTS 25
3.1 Introduction 25
3.2 Fabrication of the sensor 26
3.2.1. The fabrication of the side-polished fiber 28
3.2.2. The fabrication of reflecting mirror on the end faucet of fiber 33
3.3 Fluorophore so-gel preparation 34
3.4 Experiments 37
3.4.1. Measurement of temperature 37
3.4.2. Measurements of concentration of hydrogen peroxide solutions 40
IV RESULTS AND DISCUSSION 42
4.1 Introduction 42
4.2 Properties of the side-polished fiber 42
4.3 The fiber optic temperature sensor application 50
4.4 The concentration detection of hydrogen peroxide solutions 58
V Conclusion and Future Work 65
Reference 67
[1] J.E .Freeman,A.G. childer. A.W. steele and G.Hieftje, “Analytical and Bioanalytical Chemistry”, Anal.chem.Acta 1777(1985)1445
[2] G. Beheim and D. J. Anthan, “Fiber-optic photoelastic pressure sensor with fiber-loss compensation”, Optics Letters(1987) 220–222.
[3] G.B.Hocker, “Fiber-optic sensing of pressure and temperature”, Appl.optics 18 (1979) 1445.
[4] D. A. Pinnow, T. C. Rich, F. W. Ostermayer Jr., and M. DiDomenico Jr., “Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials,” Appl. Phys. Lett. 22, (1973)527–529.
[5] E. Ito ,J Muramatu and T.Kanazawa and Y.Koike,U. Yagi, T.Aobukawa and K,Takada, Proc .POF 94(1994) 52.
[6] M. Mitsushio, T. Yoshodome, S. Kamata, “Analysis of carboxlic acid
esters and lubricants using a gold-coated optical-fiber sensor system”,
Bunseki Kagaku 49 (2000) 307–311.
[7] J.P. Golden, L.C. Shreiverlake, G.P. Anderson, R.B. Thompson, F.S.
Ligler, “Fluorescence and tapered fiber optic probes for sensing in
the evanescent wave”, Opt. Eng. 31 (1992) 1458–1462.
[8] J.P. Golden, G.P. Anderson, S.R. Rabbany, F.S. Ligler, “An
evanescent-wave biosensor”, “2. Fluorescent signal acquisation from
tapered fiber optic probes”, IEEE Trans. Biomed. Eng. 41 (1994)
585–591.
[9] M.Tokunaga,T.Yanagida, “Single molecule imagining of fluorophores and enzymatic reaction achieved by objective-type total internal reflection fluorescence microscopy”, Biochem. Biophys. Res.
Commun. 235 (1997) 47–53.
[10] Navneet K. Sharma, B.D. Gupta, “Fabrication and characterization of pH sensor based onside polished single mode optical fiber”, Optics Communications 216 (2003) 299–303
[11]Y. Raichlin, L. Fel, A. Katzir, “Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements”, Opt. Lett. 28 (2003)2297–2299.
[12]D. Axelrod, “Total internal reflection fluorescence at biological surfaces”, in: Noninvasive Techniques in Cell Biology, Wiley–Liss, Inc.,New York, NY, 1990.
[13]George P. Anderson, Joel P. Golden,and Frances S. Ligler “An Evanescent Wave Biosensor-Part I: Fluorescent Signal Acquisition from Step-Etched Fiber Optic Probes”, IEEE Trans. Biomed.Eng. (1994)
[14]D.L.Woerdeman,R.S.Parnas,“Model of a fiber-optic evanescent-wave fluorescence sensor”, Appl. Spectrosc. 55 (2001) 331–337.
[15] J.P. Golden, L.C. Shreiverlake, G.P. Anderson, R.B. Thompson, F.S. Ligler, “ Fluorescence and tapered fiber optic probes for sensing in the evanescent wave”, Opt. Eng. 31 (1992) 1458–1462.
[16] Mohammad Ahmad, Kuang-Po Chang, T.A. King, Larry L. Hench, “A compact fibre-based fluorescence sensor”, Sensors and Actuators A 119 (2005) 84–89
8[17] J. Matthew Mauro,Lynn K. Cao, Lynne M. Kondracki, Stephen E. Walz, and James R. Campbell†, “Fiber-Optic Fluorometric Sensing of Polymerase Chain”,“Reaction-Amplified DNA Using an Immobilized DNA Capture Protein”, Analytical Biochemistry 235 (1996) 61–72
[18] Randy M. Wadkins, Joel P. Golden, and Frances S. Ligler, “Calibration of Biosensor Response Using Simultaneous Evanescent Wave Excitation of Cyanine-Labeled Capture Antibodies and Antigens”, Analytical Biochemistry 232(1995) 73–78
[19] Othman Belhadj Miled , Hafedh Ben Ouada , Jacques Livage, “ pH sensor based on a detection sol–gel layer onto optical fiber”, Materials Science and Engineering C 21 (2002) 183–188
[20] Ferell, T. L., Callcott, T. A., Warmack, R. J., et al. “Plasmons and surfaces”. American Scientist 73 (1985)344-353.
[21]Salamon, Z, Macleod, H. “Ι: Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems’’, “II: Application to biological systems’’. Biochimica et Biophysica Acta 1311(1977) 131-151.
[22] M.M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, J. Mateo, “ Determination of probable alcohol yield in musts by means of an SPR optical sensor, Sensors and Actuators” B 11 (1993) 455–459.
[23] C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmons resonance, Sensors and Actuators”3 (1982)
[24] B. Liedberg, C. Nylander, I. Lundstro¨m, “Surface plasmons resonance for gas detection and biosensing”, Sensors and Actuators 4 (1983) 299–304.
[25]K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement”, Appl. Opt. 27 (1988) 1160–1163.
[26] B. Liedberg, I. Lundstrom, E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance, Sensors and Actuators” B 11 (1993) 63–72.
[27] L.M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance”, Electron. Lett. 23 (1988) 1469–1470.
[28] R.C. Jorgenson, S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance, Sensors and Actuators” B 12 (1993) 213–220.
[29] P.S. Vukusic, G.P. Bryan-Brown, J.R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing”, Sensors and Actuators B 8 (1992) 155–160.
[30] A.A. Kruchinin, Y.G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA probe biosensor, Sensors and Actuators”, B 30 (1996) 77–80.
[31] Tania M.H. Costa , Valter Stefani , M_arcia R. Gallas ,Naira M. Balzaretti , Jo~ao A.H. da Jornada, “Fluorescent compacts prepared by the entrapment of benzoxazole type dyes into a silica matrix at high pressure”, Journal of Non-Crystalline Solids 333 (2004) 221–225.
[32] M. Ahmad, T.A. King, D.K. Ko, B.H. Cha, J. Lee, “erformance and hotostability of xanthene and pyrromethene laser dyes in sol–gel hases” J. Phys. D Appl. Phys. 35 (2002) 1473–1476.
[33] L.L. Hench, “Sol–Gel Silica, Properties, Processing and Technology Tansfer” Noyes Publications (1998) 72.
[34] A. Arena , S. Patan_e , G. Saitta , G. Rizzo , S. Galvagno , G. Neri , “Photoluminescence from organic–inorganic multilayers ased on sol–gel derived titania”, Journal of Non-Crystalline Solids 331 (2003) 263–268.
[35] H. PODBIELSKA and A. ULATOWSKA-JAR˙ZA, “Sol-gel technology for biomedical engineering”, Bulletin of The Polish Academy of Sciences Ethnical Sciences (2005)
[36] Andrzej M. Kłonkowski, Krzysztof Kledzik,Ryszard Ostaszewski, Julia Jezierska, “ Fluorosensor action of bis-9-anthryl derivatives
immobilised in silica xerogel”, Applied Surface Science 196 (2002) 383–391 .
[37] Faeiza Hussain, David J.S. Birch, John C. Pickup, “ Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase”, Analytical Biochemistry 339 (2005) 137–143.
[38] K. Hwang, Y. Lim, “Chemical and structural changes of hydroxyapatite films by using a sol–gel method”, Surface and Coatings Technology 115 (1999) 172–175 .
[39] F. De Matteis , P. Prosposito , F. Sarcinelli , M. Casalboni ,
R. Pizzoferrato , A. Furlani , M.V. Russo , A. Vannucci , M. Varasi, “Silica-based sol-gel films optically functionalized through doping with organic molecules ”, Journal of Non-Crystalline Solids 245 (1999) 15-19 .
[40] Iwona Holowacz, Agnieszk Ulatowska-Jarz˙, Halina Podbielsk , “Sol–gel coatings for interstitial fiber optic laser applicators”, Surface and Coatings Technology 180 –181 (2004) 663–669.
[41] Hiroaki Aizawal, Tooru Katsumatal, Shuji Komurol, Takitaro Morikawal,Hiroaki Ishizawa and Eiji Toba,“Fiber-optic thermometer for high temperature measurement”, SICE-ICASE International Joint Conference (2006)18-21.
[42] T. Sun, Z.Y. Zhang, K.T.V. Grattan , A.W. Palmer, “Intrinsic doped fibre fluorescence-lifetime based high temperature alarm
sensor”, Sensors and Actuators 76(1999) 67–71
[43] E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D.B. Ostrowsky, G.W. Baxter, “Erbium-doped silica fibers for intrinsic fiber optic temperature sensors”, Appl. Opt. 34(1995) 8019–8025.
[44] V.C. Fernicola, Z.Y. Zhang, K.T.V. Grattan, “Fiber optic thermometry based on Cr-fluorescence in olive crystals”, Rev. Sci. Instrum. 68 (1997) 2418–2421.
[45] Z.Y. Zhang, K.T.V. Grattan, A.W. Palmer, B.T. Meggitt, “Potential for temperature sensor applications of highly neodymium-doped crystals crystals and fiber at up to approximately 1000℃”, Rev. Sci. Instrum. 68(1997) 2759–2763.
[46] Z.Y. Zhang, K.T.V. Grattan, A.W. Palmer, B.T. Meggitt, T. Sun, “Fluorescence decay-time characteristics of erbium-doped optical fiber at elevated temperatures”, Rev. Sci. Instrum.68(1997) 2764–2766.
[47] S. D_Auria, P. Herman, M. Rossi, J.R. Lakowicz, “The fluorescence emission of the apo-glucose oxidase from Aspergillus niger as probe to estimate glucose concentrations”, Biochem. Biophys. Res. Commun. 263 (1999) 550–553.
[48] G.W. Shaw, D.J. Claremont, J.C. Pickup, “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients”, Biosens. Bioelectron. 6 (1991) 401–406.
[49] S. de Marcos, J. Galindo, J.F. Sierra, J. Galban, J.R. Castillo, “An optical glucose biosensor based on derived glucose oxidase immobilised onto a sol-gel matrix”, Sens. Actuat. B 57 (1999) 227–232.
[50] D. McGuinness, K. Sagoo, D. McLoskey, D.J.S. Birch, “A new sub-nanosecond LED at 280 nm: Application to protein fluorescence”, Meas. Sci. Technol. 15 (2004) L19–L22.
[51] Ian D. Johnson and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University
[52] Chii-Wann Lin, Shi-Ming Lin, Ying-Tsuen Lion, “The Fabrication of Fiber Surface Plasmon Resonance Microsensor for Biomedical Application”, Institute of Biomedical Engineering N.T.U, (2002).
[53] Line Card and Beyond Gail Overton Side-Polished Fiber From the Lab to the – Product Marketing Manager- Oluma , Inc.September 2003.
[54] H. Schmidt, “New type of non-crystalline solids between inorganic
and organic materials”, J. Non-Cryst. Solids 73. (1985),681–691
[55] H. Huang, B. Orler, and G. L. Wilkes, “Ceramers: hybrid materials
incorporating polymeric/oligomeric species with inorganic glasses by a sol gel process. 2. Effect of acid content on the final properties”, Polym. Bull. 14 (1985) 557–564.
[56] H. Podbielska and A. Ulatowaska,Za, “Sol-gel technology for biomedical engineering”, Bulletin of the Polish Academy o f Sciences Technical Sciences(2005)
[57] J. Kostov and G. Rao, “Low-cost optical instrumentation for biomedical measurements”, Rev. Sci. Instrum (2000), 4361–4374.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top