(3.227.249.155) 您好!臺灣時間:2021/05/07 05:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉信宏
研究生(外文):Shin-Hung Liu
論文名稱:SUS403不�袗�經電弧披覆(Ti,Al,Cr)N多層膜之表面特性研究
論文名稱(外文):Study on Surface Characteristics of SUS403 Stainless Steel Coated by Multilayered (Ti,Al,Cr)N Films via Cathodic Arc Deposition
指導教授:許正勳許正勳引用關係
指導教授(外文):Prof. Cheng-Hsun Hsu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:105
中文關鍵詞:氮化鉻氮化鈦鋁週期厚度多層膜
外文關鍵詞:CrN、TiAlN、periodic thickness、Multilayer。
相關次數:
  • 被引用被引用:1
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究以陰極電弧離子沉積製程披覆(Ti,Al,Cr)N多層膜,以改變轉速來控制不同週期膜厚的(Ti,Al,Cr)N多層膜,並比較沉積方向不同對薄膜特性的影響。本實驗(Ti,Al,Cr)N多層薄膜其週期膜厚在奈米尺寸的範圍。多層膜的優點在於不僅能結合單一薄膜的特性,在硬度上會有明顯的提升。
實驗結果分別以掃描式電子顯微鏡(SEM) 、X光繞射儀(XRD)、X光電子光譜儀(XPS)、輝光放電分析(GDS)觀察鍍膜微結構及組織型態;鍍膜特性方面分析有膜的附著性(Adhesion)、硬度(Hardness)、耐磨耗性(Wear)、抗腐蝕(Corrosion)性相繼來探討膜的性質變化。
  由實驗結果顯示,直立試片鍍膜無論在機械性質或耐腐蝕性質上皆比水平試片鍍膜來得優異,且隨著轉速的提高,機械性質或耐腐蝕性質有略為提升的趨勢,其中以4rpm最好。在SUS 403不�袗�的表面鍍膜能明顯的提昇其硬度與耐腐蝕性。
Abstract
This research is focused on the effects of TiAlN/CrN Multilayered coatings synthesized by cathodic arc ion plating technology. The coatings were deposited using one Ti50Al50 alloy target and one Cr99.99 target with a fixed target power in all the processes, while the layer thickness was varied by various rotation speeds of the substrate holder in order to produce different nanoscale multi-layered period thickness. In the bargain, discuss the effects of different deposition direction.
The texture structure, and nanoscale multi-layer period thickness of the coatings were determined by X-ray diffraction、Scanning electron microscope and Glow discharge spectrometer for chemical analysis. Hardness and adhesion strength of the coatings were measured by Nanoindentation and Rockwell-C indentation methods, respectively. Corrosion of the coatings were measured by Polarization and immersion test.It has been found that the mechanical properties of the multi-layer
better then the SUS403 stainless steel. The potentiodynamic polarization measurements showed that for all the coatings the corrosion potential shifted to higher values as compared to the uncoated substrate. Similarly, the corrosion current density decreased for coated samples, indicating better corrosion resistance of the coated samples.
中文摘要I
英文摘要II
目錄III
表目錄VII
圖目錄VIII
第一章 前言1
第二章 文獻回顧3
2.1 SUS403不�袗�3
2.2 物理氣相沉積4
2.3 物理氣相沉積鍍膜之結構模型5
2.4 陰極電弧鍍膜沉積原理7
2.4.1 微粒的生成和影響12
2.4.2 抑制微粒生成方法13
2.5 TiAlN及CrN特性15
2.5.1 CrN15
2.5.2 TiAlN15
2.6 鍍膜成份與結構測量方法16
2.6.1 化學分析電子術16
2.6.2 GDS縱深成份分析17
2.7 鍍膜附著性測量方法18
2.8 鍍膜硬度測量方法21
2.8.1 Hv硬度試驗21
2.8.2 奈米壓痕試驗22
2.9 鍍膜磨耗測量方法25
2.10 鍍膜腐蝕測量方法26
2.10.1 極化試驗26
2.10.2 浸蝕試驗27
第三章 實驗方法與步驟28
3.1 實驗鍍膜前處理28
3.1.1 基材準備28
3.1.2 鍍膜前處理29
3.1.3 陰極電弧離子披覆鍍膜製程29
3.1.4 鍍膜試片放置方式31
3.2 鍍膜結構與形態分析34
3.2.1 XRD繞射分析34
3.2.2 掃描式電子顯微鏡觀察34
3.2.3 場發射式電子顯微鏡觀察35
3.2.4 GDS縱深成份分析35
3.2.5 原子力顯微鏡分析35
3.2.6 ESCA化學能譜儀分析36
3.3 鍍膜試片性質分析36
3.3.1 維氏硬度試驗37
3.3.2 洛氏硬度壓痕試驗37
3.3.3 奈米壓痕試驗37
3.3.4 磨耗試驗38
3.3.5 表面粗糙度試驗38
3.3.6 極化曲線試驗38
3.3.7 浸蝕試驗38
第四章 結果與討論40
4.1 鍍膜表面及橫截面的觀察40
4.1.1 鍍膜SEM表面型態40
4.1.2 鍍膜SEM橫截面型態44
4.2 鍍膜成份與結構51
4.2.1 鍍膜結構分析51
4.2.2 鍍膜成份分析54
4.2.3 XPS表面鍵結分析57
4.3 鍍膜表面粗糙度與附著性61
4.3.1 鍍膜表面粗度分析61
4.3.2 鍍膜附著性分析69
4.4 鍍膜硬度與磨耗分析72
4.4.1 Hv硬度分析72
4.4.2 奈米壓痕硬度分析76
4.5 鍍膜耐磨耗性79
4.6 鍍膜耐腐蝕性89
4.6.1 極化試驗分析89
4.6.2 浸蝕試驗分析94
第五章 結論98
第六章 參考文獻100
圖目錄
Fig. 2.1 Schematic diagram of Thornton’s zone mode6
Fig. 2.2 Schematic principle of cathodic arc deposition process9
Fig. 2.3 The facility diagram of CAD system in this experimental10
Fig. 2.4 Schematic diagram of CAD system11
Fig. 2.5 The process of melting crater from CAD12
Fig. 2.6 Diagram showing the major components in an arc source
employing a quartertorus macroparticle filter14
Fig. 2.7 The schematic diagram of photoelectron occurred16
Fig. 2.8 Schematic principle of Glow Discharge Spectrometer18
Fig. 2.9 Evaluation of coating adhesion strength from HF1 to HF620
Fig. 2.10 A typical Berkovich indenter tip23
Fig. 2.11 (a) A typical load-displacement curve and (b) the deformation
pattern of an elastic-plastic sample during and after indentation
24
Fig. 2.12 The facility diagram of ball-on-Disc system25
Fig. 3.1 The flow chart of the experiment33
Fig. 3.2 Dimensions of the SUS403 specimen28
Fig. 3.3 The placement of specimens on the holder31
Fig. 4.1 The surface morphology of the coated specimens via the vertical
deposition and the different rotation rates (a) 2rpm,(b) 3rpm,(c)
4rpm,(d) 5rpm42
Fig. 4.2 The surface morphology of the coated specimens via the
horizontal deposition and the different rotation rates (a) 2rpm,
(b) 3rpm, (c) 4rpm, and(d) 5rpm43
Fig. 4.3 The cross-section view of the (Ti,Al,Cr)N coatings via the
vertical deposition and the different rotation rates (a) 2rpm,
(b) 3rpm, (c) 4rpm, and(d) 5rpm45
Fig. 4.4 The cross-sectional view of the (Ti,Al,Cr)N coatings via the
horizontal deposition and the different rotation rates (a) 2rpm,
(b) 3rpm, (c) 4rpm, and(d) 5rpm46
Fig. 4.5 Cross-sectional SEM micrographs of the TiAlN/CrN
multilayered coatings deposited at 2rpm (a)Vertical,SE image,
(b)Vertical,BSE image, (c)Horizontal,SE image, and (d)Horizontal,BSE image47
Fig. 4.6 Cross-sectional SEM micrographs of the TiAlN/CrN
multilayered coatings deposited at 3rpm (a)Vertical,SE image,
(b)Vertical,BSE image, (c)Horizontal,SE image, and
(d)Horizontal,BSE image48
Fig. 4.7 Cross-sectional SEM micrographs of the TiAlN/CrN
multilayered coatings deposited at 4rpm (a)Vertical,SE image,
(b)Vertical,BSE image, (c)Horizontal,SE image, and
(d)Horizontal,BSE image49
Fig. 4.8 Cross-sectional SEM micrographs of the TiAlN/CrN
multilayered coatings deposited at 5rpm (a)Vertical,SE image,
(b)Vertical,BSE image, (c)Horizontal,SE image, and
(d)Horizontal,BSE image50
Fig. 4.9 XRD pattern of the CrN coatings52
Fig. 4.10 XRD pattern of the TiAlN coatings52
Fig. 4.11 XRD pattern of the (Ti,Al,Cr)N coatings via the vertical
deposition53
Fig. 4.12 XRD pattern of the (Ti,Al,Cr)N coatings via the horizontal
deposition53
Fig. 4.13 Depth profile pattern of the coatings via the vertical deposition
and the different rotation rates (a)2rpm, (b) 3rpm, (c) 4rpm,
and(d) 5rpm55
Fig. 4.14 Depth profile pattern of the coatings via the horizontal
deposition and the different rotation rates (a)2rpm, (b) 3rpm,
(c) 4rpm, and(d) 5rpm56
Fig. 4.15 XPS pattern for the (Ti,Al,Cr)N coatings via the vertical
deposition58
Fig. 4.16 XPS pattern for the (Ti,Al,Cr)N coatings via the horizontal
deposition58
Fig. 4.17 XPS Ti2p spectra for the (Ti,Al,Cr)N filtered coatings59
Fig. 4.18 XPS Al2p spectra for the (Ti,Al,Cr)N filtered coatings59
Fig. 4.19 XPS Cr2p spectra for the (Ti,Al,Cr)N filtered coatings60
Fig. 4.20 AFM surface morphology of the coatings (a) 2rpm
vertical, and(b) 2rpm horizontal63
Fig. 4.21 AFM surface morphology of the coatings (a) 3rpm vertical, and(b) 3rpm horizontal64
Fig. 4.22 AFM surface morphology of the coatings (a) 4rpm vertical, and(b) 4rpm horizontal65
Fig. 4.23 AFM surface morphology of the coatings (a) 5rpm vertical, and(b) 5rpm horizontal66
Fig. 4.24 The comparison of Ra value of the coated specimens67
Fig. 4.25 The comparison of AFM surface roughness of the coated
specimens68
Fig. 4.26 Indented surface morphologies of various horizontal coated
specimens (a)2rpm, (b)3rpm, (c)4rpm, and(d)5rpm70
Fig. 4.27 Indented surface morphologies of various vertical coated
specimens (a)2rpm,(b)3rpm,(c)4rpm, and(d)5rpm71
Fig. 4.28 The comparison of hardness for uncoated and vertical coated
specimens73
Fig. 4.29 The comparison of hardness for uncoated and horizontal coated
specimens74
Fig. 4.30 The comparison of hardness for vertical and horizontal coated
specimens75
Fig. 4.31 Hardness and Young’s modulus of the coatings via the vertical
deposition and the different rotation rates78
Fig. 4.32 Hardness and Young’s modulus of the coatings via the
horizontal deposition and the different rotation rates78
Fig. 4.33 Friction coefficient of the vertical coated specimens under wear
test with a loading of 10N80
Fig. 4.34 Friction coefficient of the horizontal coated specimens under
wear test with a loading of 10N80
Fig. 4.35 Wear track analysis by SEM and EDS mapping for the 2rpm
vertical coated specimens81
Fig. 4.36 Wear track analysis by SEM and EDS mapping for the 3rpm
vertical coated specimens82
Fig. 4.37 Wear track analysis by SEM and EDS mapping for the 4rpm
vertical coated specimens83
Fig. 4.38 Wear track analysis by SEM and EDS mapping for the 5rpm
vertical coated specimens84
Fig. 4.39 Wear track analysis by SEM and EDS mapping for the 2rpm
horizontal coated specimens85
Fig. 4.40 Wear track analysis by SEM and EDS mapping for the 3rpm
horizontal coated specimens86
Fig. 4.41 Wear track analysis by SEM and EDS mapping for the 4rpm
horizontal coated specimens87
Fig. 4.42 Wear track analysis by SEM and EDS mapping for the 5rpm
horizontal coated specimens88
Fig. 4.43 Polarization current of vertical coated and uncoated specimens
90
Fig. 4.44 Polarization current of horizontal coated and uncoated
specimens90
Fig. 4.45 Surface morphology of vertical coated specimens after
polarization test.(a)2rpm, (b)3rpm, (c)4rpm, and(d)5rpm92
Fig. 4.46 Surface morphology of horizontal coated specimens after
polarization test.(a)2rpm, (b)3rpm, (c)4rpm, and(d)5rpm93
Fig. 4.47 Comparison of weight loss of uncoated and vertical coated
specimens in 10 vol.% HCl solution95
Fig. 4.48 Comparison of weight loss of uncoated and horizontal coated
specimens in 10 vol.% HCl solution95
Fig. 4.49 Comparison of weight loss of uncoated and vertical coated
specimens in 10 vol.% H2SO4 solution96
Fig. 4.50 Comparison of weight loss of uncoated and horizontal coated
specimens in 10 vol.% H2SO4 solution96
Fig. 4.51 Comparison of weight loss of vertical and horizontal specimens
in 10 vol.% HCl solution after 96 hours97
Fig. 4.52 Comparison of weight loss of vertical and horizontal specimens in 10 vol.% H2SO4 solution after 96 hours97
第六章 參考文獻
1. S.J.Bull, A.M.Jones. Surf. Coat. Technol. vol.78,(1996),pp. 173-184.
2. 黃昭然,”SUS 403麻田散鐵不�袗�經熱機處理之機械及超音波特
性研究”, 大同大學碩士論文,(2007)。
3. 李建志,” 過濾式陰極電弧沉積(Ti,TiAl)N/(Ti,TiAl)CN混合鍍膜
之特性研究”, 大同大學碩士論文,(2006)。
4. Kenneth Holmberg and Allen Matthews, Ronkainen Helena, “Contact mechanisms and surface design”, Coatings Tribology, Tribology International v 31, n 1-3, (1998), pp. 107-120.
5. M. H. Francombe and J.L. Vossen ed., Physics of Thin Films, Academic Press Inc., (1989).
6. 林彥鈞,”陰極電弧沈績Cr(N,O)/CrN複合鍍膜之氧化與腐蝕行為研究”,大同大學碩士論文,(2004)。
7. John A. Thornton, The Journal of Vacuum Science for Films and Coatings vol.11,No.4, (1974), pp.666-670.
8. 柯賢文,表面與薄膜處理技術,全華科技圖書股份有限公司,(2005)。
9. 謝文彬,”Microstructure and Thermal stability of Physical Vapor Deposited Chromium-based Coatings”, Ph. D thesis of National Chung Hsing University, (2002) pp. 20-29.
10. D. M. Mattox, Noyes, Park Ridge NJ,” Handbook of physical vapor deposition (PVD) processing”, (1998), p. 378.
11. 行政院國家科學委員會精密儀器發展中心,”真空技術與應用”, (2001), pp. 96- 98。
12. K. W. Weng, “System and Process Correlation in Cathodic Arc Evaporation”, Ph. D thesis of National Chung Hsing University, (2002), p. 4.
13. 賴奎良,” ADI利用陰極電弧電漿沈積法披覆TiN/TiAlN之鍍膜特性及腐蝕行為研究”,大同大學碩士論文,(2005).
14 Mineo Nishibori, “How to solve problems of films coated by ARC methods”, Surface and Coatings Technology, vol.52,(1992), pp.229-233.
15. R.L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control”, Surface and Coatings Technology,vol.52,(1992),pp.39-50.
16. 趙浩勇,何主亮,陳克昌,表面技術雜誌,153期,P75.
17. 陳逸峰,” DC53模具鋼經滲氮及電弧PVD鍍膜處理之表面特性研究”,大同大學碩士論文,(2007).
18. S.P. Lau, Y.H. Cheng, J.R. Shi, P. Cao, B.K. Tay, and X. Shi, “Filtered cathodic vacuum arc deposition of thin film copper”, Thin Soild Films,vol.398-399,(2001),pp.539-543.
19. Krzysztof Miernik, Jan Walkowicz, and Jan Bujak, “Design and performance of the microdroplet filtering system used in cathodic arc coating deposition”, Plasma & Ions, vol.3, (2000), pp.41-51.
20. M. Hakovirta, V.M. Tiainen, and P. Pekko, “Techniques for filtering graphite macroparticles in the cathodic vacuum arc deposition of tetrahedral amorphous carbon films”, Diamond and Related Materials, vol.8, (1999), pp.1183-1192.
21. P. J. Martin and A. Bendavid, “Review of the filtered vacuum arc process and materials deposition”, Thin Solid Films, vol.394, (2001), pp.1-15.
22. S. Inoue, H. Uchide, Y. Yoshinaga and K. Koterazawa, Thin Solid Films, vol.300, (1997) , pp.171-176.
23. 儀器總覽,表面分析儀器, (1998)。
24. 輝光放電縱深成分分析儀操作手冊,大同大學材料系, (2005)。
25 J.R. Tuck, A.M. Korsunsky, D.G. Bhat, S.J. Bull, “Indentation hardness evaluation of cathodic arc deposited thin hard coatings”, Surf. Coat. Technol, vol.139, (2001), pp.63-74.
26. W. Heinke, A. Leyland, Mattews, G. Berg, C. Fridrich, E. Brosezeit, “Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests“ ,Thin Solid Films, vol.270, (1995), pp.431-438.
27. 汪建民主編,“材料分析Materials Analysis“, (2003)。
28. Kyung H. Nam, Yun M. Jung, Jeon G. Han, “A comparaive study of microstructure and mechanical properties for CrNx films with various deposition rates by magnetron sputtering”, Surf. Coat. Technol, vol.
29. P. J. Burnett and D. S. Rickerby, Thin Solid Films, Vol.154, (1987), pp.403-416.
30. A.M. Korsunsky, MR. Mcgurk, S.J. Bull and T.F. Page, Surface and Coatings Technology,Vol.99, (1998), pp.171-183.
31. Oliver WC, Pharr GM, Improved technique for determining hardness and elastic modulus using load and displacement sensing indention experiments, Journal of Materials Research, vol. 7, (1992), pp. 1564-1580.
32. G. M. Pharr, Measurement of mechanical properties by ultra-low load indentation Materials science and engineering A, vol. 253, (1998), pp. 151-159.
33. Nanoindentierung – Eine Sonde für die lokalen mechanischen Eigenschaften, http://www.dgm.de/past/2004 /metallographie/ download/686_83.pdf.
34. Nano-Indentation Fixture for an MTS machine to measure Modulus, http://homepages.cae.wisc.edu/~bme300/nanoindent/bec&sean.mid.sem.paper.pdf.
35. 沈家煌,”陰極電弧蒸鍍技術沉積Cr(N,O)/CrN四層薄膜之機械性質與耐腐蝕特性研究”,明道管理學院碩士論文,(2007)。
36. 柯賢文,“腐蝕及其防制“,全華科技圖書股份有限公司,(1994), pp.119-135。
37. 洪志穎,” 以陰極電弧沉積TiAlNCrN多層膜機械性質研究”,明道管理學院碩士論文,(2005)。
38. G.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, L.S. Shuster, L. Ning, “Self-adaptive wear behavior of nano-multilayered TiAlCrN/WN coatings under severe machining conditions.” Surface and Coatings Technology, vol.201, (2006), pp.1852-1860.
39. G.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, G.K. Dosbaeva, “Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions.” Surface and Coatings Technology, vol.200, (2005), pp.1804-1813.
40. Wangyang Ni, Yang Tse Cheng, Michael Lukitsch, Anita M. Weiner, Lenoid C. Lev, David S. Grummon, Novel layered tribological coatings using a superelastic NiTi interlayer, Wear, vol. 259, 2005, pp. 842-848.
41. Elisa Riedo, Harald Brune, Young modulus dependence of nanoscopic friction coefficient in hard coatings, Applied Physics Letters, vol. 83, (2003), p.1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔