(3.236.222.124) 您好!臺灣時間:2021/05/14 14:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王信富
研究生(外文):Hsin-Fu Wang
論文名稱:銅基填料之錫含量對碳化鎢與SCM440機械構造用鋼硬銲接合件結構及特性之影響
論文名稱(外文):Effect of Tin Content on the Microstructure and Property of Brazed WC-Co/CrMo Alloy Steel Joints
指導教授:邱六合
指導教授(外文):Liu-Ho Chiu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:97
中文關鍵詞:剪切力微觀結構真空硬銲碳化鎢
外文關鍵詞:MicrostructureVacuum brazingCemented carbidesShear strength
相關次數:
  • 被引用被引用:2
  • 點閱點閱:404
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對碳化鎢與SCM440機械構造用鋼的異質材料進行真空硬銲接合,填料選用分別為Cu-5Sn、Cu-7Sn、Cu-9Sn三種不同錫含量的青銅片。本實驗進行真空硬銲接合條件為,硬銲溫度1050~1110℃、持溫時間5~15分鐘為變化參數。實驗結果顯示利用Cu-9Sn為填料,在硬銲條件為1080℃/10min下有最大剪切力為341±15MPa。當硬銲溫度在1050~1080℃時,剪切力隨著Sn含量的增加,而有上升的趨勢,但是當硬銲溫度升到1100℃反而有下降的趨勢。從WC/Cu-Sn/SCM440的SEM圖配合EPMA分析可以觀察到在WC/Cu-Sn界面生成Fe-Co-Cu的層狀合金相。此層狀合金相不僅隨著硬銲溫度的上升而成長,且跟Sn的含量增加也有相對變厚的趨勢。
Vacuum brazing of Cemented Tungsten Carbide (WC-Co) and JIS SCM440 steel using Cu-Sn braze alloys has been studied. The effect of Sn content in the filler metals on the microstructures and properties of brazed joints was investigated. The specimens were brazed under 1050°C to 1110°C for 5 to 15 minutes. The experimental results show that the maximum shear strength is 341±15MPa for the joints brazed at 1080°C for 10 min by using Cu-9Sn filler. Shear strength of the joints brazed at 1050°C and 1080°C increased as Sn content added to the braze alloy. However, joints brazed at 1110°C showed a decline in shear strength as the increase of Sn content. From SEM micrographs, an Fe-Co-Cu alloy layer was formed at WC-Co/Cu-Sn interface and the property of the layer was affected by brazing temperature and Sn content.
中文摘要Ⅰ
英文摘要Ⅱ
目錄Ⅲ
表目錄Ⅶ
圖目錄Ⅷ
第一章 前言1
第二章 文獻回顧5
2-1材料接合5
2-1-1硬銲接合5
2-2 濕潤性8
2-2-1潤濕性指標10
2-3 毛細作用 10
2-4 硬銲溫度與時間 14
2-5 其他硬銲製程參數17
2-6 硬銲爐之加熱原理19
2-7 填充合金22

第三章 實驗步驟25
3-1 實驗材料25
3.2硬銲填料25
3-3硬銲處理25
3-3-1硬銲試片製作及前處理25
3.3.2硬銲接合26
3-4光學顯微鏡觀察27
3-5電子顯微鏡觀察27
3-6剪力強度測試27
3-7電子微探儀區分析28
第四章 結果與討論 26
4-1碳化鎢氧化現象29
4-2 WC-Co/Cu-5Sn/SCM440硬銲接合29
4-2-1硬銲溫度、持溫時間對接合界面微觀結構之影響29
4-2-2 WC-Co/Cu-5Sn/SCM440硬銲件的元素分佈分析31
4-3 WC-Co/Cu-7Sn/SCM440硬銲接合32
4-3-1硬銲溫度、持溫時間對接合界面微觀結構之影響32
4-3-2 WC-Co/Cu-7Sn/SCM440硬銲件的元素分佈分析32
4-4 WC-Co/Cu-9Sn/SCM440硬銲接合33
4-4-1硬銲溫度、持溫時間對接合界面微觀結構之影響 33
4-2-2 WC-Co/Cu-5Sn/SCM440硬銲件的元素分佈分析33
4-5層狀界面層析出之機構34
4-6 硬銲條件對硬銲接合件剪切強度之影響 36
4-6-1硬銲溫度1050℃,持溫時間5~15分中,Cu5~9Sn 36
4-6-2硬銲溫度1080℃,持溫時間5~15分中,Cu5~9Sn 37
4-6-3硬銲溫度1110℃,持溫時間5~15分中,Cu5~9Sn 38
4-6-4 銲道寬度與剪切強度之探討38
4-7 碳化鎢種類對WC-Co/Cu-9Sn/SCM440真空硬銲接合件之影響39
4-7-1鈷含量對硬銲接合件微觀結構之響39
4-7-2 鈷含量對WC-Co/Cu-9Sn/SCM440接合件銲道元素分佈39
4-7-3 鈷含量對WC-Co/Cu-9Sn/SCM440真空件剪切強度之影響40
4-8 WC-Co/Cu-7Sn/SCM440破斷面分析40
4-9 不同鋼材之WC-Co/Cu-7Sn/Steel,真空硬銲件之影響41
4-9-1三種鋼材對WC-Co/Cu-7Sn/Steel硬銲接合件微觀結構 之影響41
4-9-2三種鋼材對WC-Co/Cu-7Sn/Steel硬銲接合強度之影響41
4-10 不同Sn含量對WC-Co/Cu-0~9Sn/SCM440,真空硬銲件之影響 42
4-10-1不同Sn含量對WC-Co/Cu-0~9Sn/SCM440硬銲接合件微觀結構之影42
4-10-2 WC-Co/Cu-0~9Sn/SCM440硬銲溫度1110℃、持溫10分鐘接合強度42
第五章 結論44
參考文獻46








表目錄

表2-1各接合方式的比較 51
表2-2各金屬與陶瓷間之接觸角 51
表3-1碳化鎢(WC)之成份與基本特性52
表3-2三種鋼材之成份分析及基本特性52
表3-3硬銲填料之成分53
表4.1碳化鎢在不同氣氛下進行熱處理之硬度53
表4-2 WC-Co/Cu-Sn/SCM440接合件在橫截面EPMA定量分析 (wt%) 54
表4-3 WC與鋼材間填料區寬度(Fe-Co-Cu + Cu-Sn) 54
表4-4 WC-Co/Cu-7Sn/SCM440 HV0.005各點硬度55







圖目錄

圖2-1 液固界面表面能及接觸角關係圖56
圖2-2 毛細現象(a)潤濕良好 (b)無潤濕 57
圖2-3 典型二元共晶相圖58
圖3-1 硬銲試片及夾具是意圖 59
圖3-2 硬銲後試片之實物照59
圖3-3硬銲接合升溫曲線60
圖3-4硬銲製程所使用之真空爐,最高使用溫度1400℃60
圖3-5 自製之單剪式剪力強度測試模具照片及示意圖61
圖3-6 自製模具SKD11熱處理條件 62
圖4-1碳化鎢在空氣爐以不同溫度持溫15min之實物照(a)原始碳化鎢
(b)700℃ (c)800℃ (d)900℃63
圖4-2 硬銲溫度1050℃,分別持溫(a)5min,(b)10min,及(c)15min之WC-Co/Cu-5Sn/SCM440真空硬銲件橫截面微觀結構64
圖4-3 硬銲溫度1080℃,分別持溫(a)5min,(b)10min,及(c)15min之WC-Co/Cu-5Sn/SCM440真空硬銲件橫截面微觀結構 65
圖4-4 硬銲溫度1110℃,分別持溫(a)5min,(b)10min,及(c)15min之WC-Co/Cu-5Sn/SCM440真空硬銲件橫截面微觀結構66
圖4-5硬銲溫度1050℃,持温15min之WC-Co/Cu-5Sn/SCM440真空硬銲件接合區SEI及元素X-ray mapping67
圖4-6硬銲溫度1110℃,持温15min之WC-Co/Cu-5Sn/SCM440真空硬銲件接合區SEI及X-ray mapping68
圖4-7硬銲溫度1110℃,持温15min之WC-Co/Cu-5Sn/SCM440真空硬銲件接合區之EPMA分析69
圖4-8硬銲溫度1050℃,分別持溫(a)5min,(b)10min,及(c)15min之 WC-Co/Cu-7Sn/SCM440真空硬銲件橫截面微觀結構70
圖 4-9硬銲溫度1080℃,分別持溫(a)5min,(b)10min,及(c)15min之WC-Co/Cu-7Sn/SCM440真空硬銲件橫截面微觀結構. 71
圖4-10硬銲溫度1110℃,分別持溫(a)5min,(b)10min,及(c)15min之WC-Co/Cu-7Sn/SCM440真空硬銲件橫截面微觀結構72
圖4-11硬銲溫度1110℃,持温15min之WC-Co/Cu-7Sn/SCM440真空硬銲件接合區SEI及元素X-ray mapping 73
圖4-12硬銲溫度1110℃,持温10min之WC-Co/Cu-7Sn/SCM440真空硬銲件接合區之EPMA分析 74
圖4.13在不同硬銲溫度持溫15min的WC-Co/Cu接合界面 75
圖4.14 1140℃持溫5、10、15min的WC-Co/Cu接合界面76
圖4.15硬銲溫度1110℃,分別持溫(a)5min,(b)10min,及(c)15min,WC-Co/Cu-9Sn/SCM440真空硬銲件橫截面微觀結構77
圖4.16硬銲溫度1080℃,持温10min之WC-Co/Cu-9Sn/SCM440真空硬銲件接合區之EPMA分析78
圖44-17 Fe-Cu二元相圖 79
圖4.18 Co-Cu二元相圖 80
圖4-19 Co-Fe二元相圖81
圖4-20 WC-Co/Cu/SAE1045硬銲接合析出層成長機制 82
圖4-21在硬銲溫度1050℃,真空硬銲件剪切強度隨Sn含量及持溫時間之變化關係 83
圖4-22在硬銲溫度1080℃,真空硬銲件剪切強度隨Sn含量及持溫時間之變化關係84
圖4-23在硬銲溫度1110℃,真空硬銲件檢剪切強度隨Sn含量及持溫時間之變化關係85
圖4-24 不同鈷含量碳化鎢,硬銲溫度1080℃,持溫15分鐘對WC-Co/Cu-9Sn/SCM440接合界面之SEM圖86
圖4-25不同鈷含量碳化鎢,硬銲溫度1080℃,持溫15分鐘,之WC-Co/Cu-9Sn/SCM440接合界面之SEI及EPMA定量分析示意圖87
圖4-26 利用Cu-9Sn為填料,以不同Co含量WC-Co,硬銲溫度1080℃持溫15分鐘之剪切強度圖88
圖4-27硬銲溫度1110℃,持温時間10分鐘WC-Co/Cu-7Sn/SCM440接合件(a)碳化鎢側破斷起點表面,A處為破壞起點,B處為破壞終點,(b)鋼材側之破斷面 88
圖4-28硬銲溫度1110℃,持温時間10分鐘WC-Co/Cu-7Sn/SCM440接合件碳化鎢側破斷起點表面SEM組織 89
圖4-29硬銲溫度1110℃,持温時間10分鐘WC-Co/Cu-7Sn/SCM440接合件碳化鎢側破斷終點表面SEM組織 90
圖4-30 WC-Co/Cu-7Sn/SCM440,硬銲條件為1110℃-10min之HV0.005(a)SEM圗及(b)金相圖. 91
圖4-31 不同鋼材之WC-Co/Cu-7Sn/Steel硬銲溫度1110℃,持溫10分鐘真空硬銲件之SEM圖 92
圖4-32在硬銲溫度1110℃持溫10分鐘,真空硬銲件剪切強度隨不同鋼材之變化關係. 93
圖4-33 不同Sn含量對WC-Co/Cu-0~9Sn/SCM440,硬銲溫度 1110℃,持溫10分鐘真空硬銲件之SEM圖94
圖4-34在硬銲溫度1110℃持溫10分鐘,真空硬銲件剪切強度隨Sn含量及持溫時間之變化關係 95
[1] 高鄂, 碳化鎢入門, 徐氏基金會, (1982)。
[2] 陳宗明,〝製程參數及結合劑對燒結碳化物之耐磨耗性能與機械性質影響評估,〞國立台灣科技大學碩士學位論文,(2000)
[3] Y. Li, Z. Zou, T. Feng, X. Wang, “Oxidation resistance and phase constituents in the brazing interface of WC-TiC-Co hard alloys,” Journal of Materials Processing Technology, Vol. 122, pp. 51-55, 2001.
[4] Y. Li, Z. Zou, X. Holly, T. Feng, X. Wang, “A study on microstructure in the brazing interface of WC-TiC-Co hard alloys,” International Journal of Refractory Metal & Hard metals, Vol. 20, pp. 169-173, 2002.
[5] S. P. Lu, O. Y. Kwon, “Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composite coating,” Surface and Coatings Technology, Vol. 153, pp. 40-48, 2002.
[6] G. Blugan, J. J. Rusch, J. Kuebler, “Properties and fractography of Si3N4/TiN ceramic joined to steel with active single layer and double layer filer alloys,” Acta Materialia, Vol. 52, pp. 4579-4588, 2004.
[7] M. Uzkut, N. S. Koksal, B. S. Unlu, “The determination of diffusion in connecting SAE 1040/WC material by brazing,” Journal of Materials Processing Technology, Vol. 169, pp. 409-413, 2005.
[8] W. B. Lee, B. D. Kwon, S. B. Jung, “Effect of bonding time on joint properties of vacuum brazed WC-Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal,” Materials Science and Technology, Vol. 20, pp. 1474-1478, 2004.
[9] W. B. Lee, B. D. Kwon, S. B. Jung, “Effect of Cr3C2 on the microstructure and mechanical properties of the brazed joints WC-Co and carbon steel,” International Journal of Refractory Metal & Hard metals, Vol. 24, pp. 215-221, 2006.
[10] G. Humpton and D. M. Jacobson, Principles of Soldering and Brazing, ASM International, pp. 3-7, 1993.
[11] M. Schwartz, Brazing: For the Engineering Technologist, ASM International, pp. 172-174, 1995.
[12] 蘇貴福, 新材料的接合技術, 全華圖書, (1992).
[13] M. M. Schwartz, Introduction to Brazing and Soldering, ASM Handbook, Vol. 6, pp. 114-125, 1993.
[14] D. A. Canonico, N. C. Cole, and G. M. Staughter, Direct Brazing of Ceramic, Graphite and Refractory Metals, Welding Journal, pp. 5-8, 1997.
[15] W. D. Brewer, R. K. Bird, T. A. Wallace, “Titaniun Alloys and Processing for High Speed Aircraft,” Material Science and Engineering, pp. 299-304. , 1998.
[16] 饒煥欽、寇立人, 最新金屬接合技術, 復漢出版社, p. 257, 1986.
[17] M. Humenik and W. D. Kingery, J.Amer. Ceram. Soc, Vol. 37, p. 18, 1954
[18] M. Schwartz, Brazing: For the Engineering Technologist, p. 8, 1995.
[19] Yu. Naidich, Prog. Surf. Membrance Sci, Vol. 14, pp. 353-359, 1981.
[20] G. Samsonov, The oxide handbook, Plenum Press, New York, p. 126, 1982.
[21] G. Geirmaert, Bull.Soc.Fr.Ceram, Vol. 41, pp. 40-45, 1957.
[22] Naka, M., Okamoto, I., “Wetting of silicon nitride by copper-titanium or copper-zirconium alloys,” Trans, JWRI, Vol. 14, No. 1, pp. 29-34, 1985.
[23] A. J. Moorhead and H. Keating, “Direct brazing of ceramics for advanced heavy-duty diesels,” Welding J., Vol. 17, pp. 17-31, 1986.
[24] W. Feduska, High-Temperature Brazing Alloy-base Metal Wetting Reactions, Vol. 38 (3), pp. 122s, 1959.
[25] W. S. Bennett, R. F. Hillyer, D. L. Keller and D. H. Rieffnberg, Vacuum Brazing Studies on High Manganese Stainless Steel, Vol. 11, pp.510s., 1974.
[26] J. F. Lancaster, Metallurgy of Welding, 3rd ed, 1980.
[27] A. Sakamoto, C. Fujiwara, T. Hattori and S. Sakai, “Optimizing processing variable in high temperature brazing with nickel-base filler metal,” Weld. J., Vol. 68, No. 3, pp. 63-71, 1989.
[28] 張清桐, Ti-6Al-4V真空硬銲研究, 博士論文, 東華大學, 2006.
[29] 林榮崧, 410不�袗�、17-4PH不�袗�及Stellite No.6鈷基超合金之銀基合金硬銲研究, 碩士論文, 台灣大學, 1987.
[30] 涂俊欽, 雷射複合銲接之接合特性研究, 碩士論文, 台灣大學, 2003.
[31] I. Okamoto, T. Takemoto and K.Den, “Vacuum Brazing of Aluminum Using Al-12%Si System Filler Alloy,” Trans. Jpn. Weld. Res. Inst, Vol. 5, No. 1, pp. 97-98, 1976.
[32] E. R. Funk and H. Udin, Brazing Hydromechanics, Vol. 6, pp. 310-316, 1952.
[33] R. D. Eng, E. J. Ryan, J. R. Doyle, “Nicle-base Brazing Filler Metals for Aircraft Gas Turbine Application," Welding Journal, pp. 15-21, Oct, 1977.
[34] H. D. Stiffens, H. Lange, “Properties of High Temperature Brazed NiCr20TiAl-PdNi40 Joints,” Welding Journal, pp. 476-479, 1974.
[35] W. A. Anderson, “Metallurgical Studies of the Vacuum Brazing of Aluminum,” Welding Research Supplement, pp. 314-318, 1977.
[36] W. E. Clautice, “Introduction Brazing at the Kennedy Space Center,” Welding Journal, pp. 612-622, 1974.
[37] H. I. Mehta, “Technique for Resistance Brazing of the Thin Copper Conductors,” Welding Journal, pp. 652-657, 1973.
[38] R. A. Woods and I. B. Robinson, “Flow of Aluminum Dip Brazing Filler Metals,” Welding Research Supplement, pp. 440-445, 1974.
[39] N. D. Wheaton, K. Mills. “Alloy Phase Diagrams”, ASM Internation, Vol. 3, pp. 110, 168, 1992.
[40] H. Ohmura, T. Yoshoda, “Deposit Mechanism of Columnar Fe-Cu-C Alloy in Cu Brazing to Dissimilar C Steel,” Yosetsu Gakkai Ronbunshu , Vol. 2, No. 4, pp. 35-42, 1984.
[41] H. Ohmura, T. Yoshoda, “Dissolution and Deposit of Base Metal in Brazing to Dissimilar Materials and its Application (Part 4),” Yosetsu Gakkai Ronbunshu , Vol. 50, No. 29, pp. 84-89, 1981.
[42] 黃家寶, 填料對碳化鎢與SAE 1045中碳鋼硬銲接合件結構及特性之影響, 碩士論文, 大同大學, 2007.
[43] 吳明哲, Al2O3/NiAl複合材料與中碳鋼硬銲接合特性及車削刀具應用之研究, 碩士論文, 國立台灣大學, 2000.
[44] 春保鎢鋼公司碳化鎢合金特性值表合金特性值表
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔