(18.232.50.137) 您好!臺灣時間:2021/05/06 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴永祥
研究生(外文):Yong-Siang Lai
論文名稱:銅-鈦基塊狀非晶合金之粉末冶金製程研究
論文名稱(外文):Formation of Cu-Ti-based Bulk Amorphous Alloys by Powder Metallurgy Route
指導教授:胡家榮胡家榮引用關係
指導教授(外文):Chia-Jung Hu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:118
中文關鍵詞:機械合金法銅基非晶質合金過冷液態區真空熱壓法擠壓成型法磨耗試驗極化試驗
外文關鍵詞:Mechanical alloyingCu-based amorphous alloySupercooled liquid regionVacuum hot pressing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:303
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用機械合金法(Mechanical Alloying)合成銅-鈦基(Cu-Ti based)合金粉末之非晶質化行為,並以真空熱壓法及擠壓成型製備塊狀非晶合金。升溫速率5℃/min之DSC熱分析下,幾種非晶質粉末在結晶反應發生前發現有寬廣過冷液態區△Tx的存在,合金Cu40Ti40Ni15Sn5為114K、合金Cu40Ti40Ni15Si5為59K、合金Cu50Ti40Sn5B5為78K、合金Cu50Ti40Ni5B5為88K。以真空熱壓法及擠壓成型製備Cu40Ti40Ni15Sn5、Cu40Ti40Ni15Si5、Cu50Ti40Sn5B5、Cu50Ti40Ni5B5塊狀非晶合金,塊材孔洞的生成與擠壓成型失敗為氧化所導致。塊材硬度值分別Cu40Ti40Ni15Sn5為658.6HV;Cu40Ti40Ni15Si5為624.5HV;Cu50Ti40Sn5B5為617.6HV;Cu50Ti40Ni5B5為604.5HV。磨耗試驗得知塊材硬度值越大其磨耗下重量損失越小,抗磨耗效果較佳。耐腐蝕試驗得知,非晶質合金Cu40Ti40Ni15Sn5、Cu40Ti40Ni15Si5,有較優異的抗腐蝕特性。且發現於NaCl水溶液的氧化反應之後都有些微的鈍化區形成,但其鈍化區的電位分佈並不大。
This study examined the amorphization behavior of Cu-Ti based alloy powders synthesized by mechanical alloying technique and investigation of consolidation by vacuum hot pressing and vacuum hot extrusion. The phase stabilities of as-milled powders were studied by DSC measurement at 5K/min heating rate. The amorphous powders were found to exhibit a wide supercooled liquid region before crystallization.
The temperature interval of the supercooled liquid region (ΔTx) is 114K for Cu40Ti40Ni15Sn5, 59K for Cu40Ti40Ni15Si5, 78K for Cu50Ti40Sn5B5, 88K for Cu50Ti40Ni5B5 respectively. Surface oxidation of powders in milling and consolidation processes led to larger amount of porosity and extruding failure. In addition, the hardness of the bulk amorphous alloys is 658.6HV for Cu40Ti40Ni15Sn5, 624.5HV for Cu40Ti40Ni15Si5, 617.6HV for Cu50Ti40Sn5B5, and 604.5HV for Cu50Ti40Ni5B5. It leads to better wear resistance for less weight loss as hardness increasing. Furthermore, Cu40Ti40Ni15Sn5 and Cu40Ti40Ni15Si5 amorphous alloys were found to exhibit a better corrosion resistance evaluated by potentiodynamic polarization measurements in 3.5wt% NaCl solution.
一、前言1
二、文獻回顧5
2.1 非晶質合金發展介紹5
2.2 非晶質合金之特性6
2.2.1 機械性質6
2.2.2 耐蝕性質及腐蝕理論7
2.2.3 磁性質9
2.3 非晶質合金之熱力學性質9
2.3.1 玻璃轉換溫度(Tg)9
2.3.2 過冷液態區(△Tx)10
2.3.3 簡化玻璃轉換溫度(Trg)10
2.3.4 γ參數11
2.4 非晶質合金之實驗三法則11
2.5 非晶質合金的製程種類12
2.6 機械合金法13
2.6.1 機械合金法原理13
2.6.2 各種變數對機械合金製程的影響15
2.6.2.1 球磨工具15
2.6.2.2 球磨氣氛15
2.6.2.3 球磨溫度16
2.6.2.4 球粉比16
2.6.2.5 球磨時間及轉速17
2.6.2.6 表面活性劑17
2.7 銅基塊狀非晶質合金17
三、實驗步驟30
3.1 粉末機械合金化製備30
3.2 塊狀非晶質合金製備31
3.3 非晶質合金特性檢測32
3.3.1 X-ray繞射分析32
3.3.2 DSC熱分析32
3.3.3 SEM描瞄式電子顯微鏡觀察33
3.4 維氏硬度試驗33
3.5 磨耗試驗33
3.6 極化試驗34
四、結果與討論41
4.1 Cu-Ti-Ni-Sn四元合金系統41
4.1.1 X-ray繞射分析41
4.1.2 DSC熱分析41
4.1.3 SEM粉末微觀結構觀察42
4.1.4 OM和SEM橫截面金相微觀結構觀察42
4.2 Cu-Ti-Ni-Si四元合金系統43
4.2.1 X-ray繞射分析43
4.2.2 DSC熱分析43
4.2.3 SEM粉末微觀結構觀察44
4.2.4 SEM橫截面金相微觀結構觀察44
4.3 Cu-Ti-Sn-B四元合金系統45
4.3.1 X-ray繞射分析45
4.3.2 DSC熱分析45
4.3.3 SEM粉末微觀結構觀察46
4.4 Cu-Ti-Ni-B四元合金系統46
4.4.1 X-ray繞射分析46
4.4.2 DSC熱分析46
4.4.3 SEM粉末微觀結構觀察47
4.5 非晶化反應47
4.6 結晶化反應48
4.7 塊狀非晶質合金製備49
4.7.1 熱壓製成非晶質塊材49
4.7.2 熱擠壓製成非晶質棒材51
4.8 硬度測試52
4.9 磨耗試驗53
4.9.1 塊材Cu40Ti40Ni15Sn5和Cu40Ti40Ni15Si5試驗比較53
4.9.2 塊材Cu50Ti40Sn5B5和Cu50Ti40Ni5B5試驗比較54
4.10 極化試驗54
五、結論57
六、參考文獻59
1. 吳學陞,新興材料-塊狀非晶質金屬材料,工業材料,第149期,第5頁。
2. 趙英俊、楊克冲、楊叔子,非晶态合金传感器技术与应用,(1998),第3-6頁。
3. X. L. Yeh, K. Samwer and W. L. Johnson, Appl. Phys. Lett., 42 (1983) 242.
4. W. Klement, R. H. Willens, and P. Duwez, Nature, Vol. 187 (1960) 869.
5. H. S. Chen, Acta Metall, 22 (1974) 1505.
6. C. C. Koch and M. S. Kim, J. Physique., 46 (1985) C8-573.
7. R. B. Schwarz, R. R. Petrich, and C. K. Saw, J. Non-cryst. Solid., 76 (1985) 281.
8. P. Y. Lee and C. C. Koch, J. Non-cryst. Solid., 94 (1987) 88.
9. G. Veltl, B. Scholz, and H. D. Kunze, Mater. Sci. and Eng., A134 (1991) 1410.
10. J. Kramer, Z. Phys., Vol 106, (1937) 639.
11. J. Kramer, Annln Phys., Vol 37, (1934) 19.
12. A.Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand, Vol. 44, (1950) 109-122.
13. H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, Vol. 45, Iss6, (1984) 615-616.
14. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans. JIM, 32 (1991) 609-616
15. A. Inoue, T. Nakamura, N.Nishiyama and T. Masumoto, Mater. Trans. JIM, 33 (1992) 937-945.
16. 惠希東、陳國良,塊體非晶合金,化學工業出版社,(2007),第4頁。
17. Z. P. Lu, and C. T. Liu, Acta. Materialia, 50 (2002) 3501-3512.
18. A. Inoue, Acta Mater., 48 (2000) 279-306.
19. A. Inoue, Material Science Foundations, Vol. 6, Trans Tech Publications, (1999) 82.
20. W. Zhang, A. Inoue, Materials Transactions, Vol. 45, No.4 (2004) 1210-1213.
21. N. Nishiyama, K. Amiya, A. Inoue, Materials Transactions, Vol. 45, No.4 (2004) 1245-1250.
22. X. Y. Li, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto,
Electrochemical and XPS, Corrosion Science, 41 (1999) 1095-1118.
23. 鄭振東,非晶質金屬漫談,建宏出版社,(1990),第39頁。
24. A. Inoue, A. Takeuchi, Mate. Sci. and Eng., A375-377 (2004) 16-30.
25. 莊裕仁,非晶質合金簡介,機械月刊,第26期,(2000),第359頁。
26. 戴道生、韓汝琪,非晶態物理,高等學校教學用書,電子業出版社,(1984)。
27. Turnbull D. Contemp. Phys., 10 (1969) 473.
28. Z. P. Lu et al., Journal of Non-crystalline Solids, 270 (2000) 103-114.
29. Z. P. Lu, C. T. Liu, Acta. Materialia, 50 (2002) 3501-3512.
30. A. Inoue, Mater. Sci. Eng., A226-228 (1997) 357.
31. A. Inoue, Mater. Trans., JIM, vol. 36, (1995) 886
32. A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum., 269-272 (1998)
855.
33. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., A29 (1998)
1779.
34. A. Inoue, Buck Amorphous Alloys. Trans Tech Publications, Zurich, Swiss,
1998.
35. Suryanarayana, C., Ivanov, E. and Boldyrev, V.V., Mater. Sci. Eng., A304-306, (2001) 151-158,.
36. C. Suryanarayana, Mechanical alloying and milling, Marcel Dekker, New York, (2004).
37. Suryanarayana C., Mechancial alloying and milling, Porgress in materials science, 46 (2001) 1-184.
38. C. Suryanarayana, G. H. Chen, and F. H. Froos, “Milling Maps for Phase Identification during Mechanical Alloying”, Scripta Metallurgicaet Materialia, (1992) 1727-1732.
39. M. Perret, H. Mehrer and N.A. Stolwijk, “Sythesis of Amorphous Co-Nb Alloy Powders by Mechanical Alloying”, Detect and Diffusion Forum, vol.66-69, (1989) 1343-1348.
40. P. Y. Lee and C. C. Koch, “The Formation and Thermal Stability of Amorphous Ni-Nb Alloy Powder Synthesized by Mechanical Alloying”, J. Non-Crystalline Solids, A94, (1987) 88.
41. P. Y. Lee, C. C. Koch, Journal of Non-Crystalline Solids, 94(1) (1987) 88-100
42. Lee, C. H., Fukunaga, T. and Mizutani, U.,“Temperature Dependence of
Mechanical Alloying and Grinding in Ni-Zr, Cu-Ta and Fe-B Alloy Systems,"
Mater. Sci. Eng. A134., (1991) 1334-1337.
43. N. Aydinbeyli, O. N. Celik, H. Gasan, K. Aybar, International Journal of Hydrogen Energy, 31 (2006) 2266-2273.
44. Eckert, J., Schultz, L. and Urban, K., “Amorphization Reaction During
Mechanical Alloying:Influence of the Milling Conditions,"J. Mater. Sci., Vol. 26, (1991) 441-446.
45. 陳振華、陳鼎,機械合金化與固液反應球磨,化學工業出版社,(2006),第53頁。
46. D. Wang, Y. Li. B. B. Sun, M. L. Sui, K. Lu and E. Ma, App. Phys. Lett., 84 (2004) 4029-4031.
47. M. K. Tam, C. H. Shek, Materials Chemistry and Physics, 100 (2006) 34-37.
48. A. Concustella, M. Zielinska, Á. Révész, L. K. Varga, S. Suriñach, M. D. Baró, intermetallics, 12 (2004) 1063-1067.
49. Q. S. Zhang, H. F. Zhang, Y. F. Deng, B. Z. Ding, Z. Q. Hu, Scripta Materialia, 49 (2003) 273-278.
50. P. Y. Lee, C. J. Yao, J. S. Chen, L. Y. Wang, R. R. Jeng and Y. L. Lin, Mater. Sci. and Eng., A375-377 (2004) 829-833.
51. Y. J. Yang, D. W. Xing, J. Shen, J. F. Sun, S. D. Wei, H. J. He and D. G. McCa-
rtney, Journal of Alloys and Compounds, 415 (2006) 106-110.
52. S. Venkataraman, E. Rozhkova, J. Eckert, L. Schultz and D. J. Sordelet, Interm-
etallics, 13 (2005) 833-840.
53. T. Zhang and A. Inoue, Mater. Trans., JIM, 40 (1999) 301.
54. C. Li, J. Saida, M. Kiminami and A. Inoue, Journal of Non-Crystalline Solids, 261 (2000) 108-114.
55. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta. Mater., 49 (2001) 2645
-2652.
56. M. Calin, J. Eckert and L. Schultz, Scripta Mater., 48 (2003) 653-658.
57. M. B. Tang, D. Q. Zhao, M. X. Pan and W. H. Wang, Chinese Physics Letters, 21 (2004) 901.
58. D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson and C. Garland, Acta Mater.
, 52 (2004) 2621-2624.
59. D. Xu, G. Duan and W. L. Johnson, Phys. Rev. Lett., 92 (2004) 245
60. 廖美芳,機械合金法合成三元及四元銅-鈦-鎳基非晶質合金之研究,私立大同大學碩士論文,(2005)。
61. 楊上旗,機械合金法合成三元及四元銅-鈦基非晶質合金之研究,私立大同大學碩士論文,(2006)。
62. A. Takeuchi and A. Inoue, Mater. Trans., Vol. 46, No. 12 (2005) 2817-2829.
63. W. Weeber and H. Bakker, Phys. B, 153 (1988) 93.
64. M. K. Tam, C. H. Shek, Materials Chemistry and Physics 100 (2006) 34–37.
65. L. Schultz, E. Hellstern, G. Zorn, Zeitschrift fur Physikalische Chemie, Neue Folge, 157(1) (1988) 203-208.
66. R. Markandeya, S. Nagarjuna and D. S. Sarma, Mater. Sci. and Eng., A371 (2004) 291-305.
67. 邱善得,電廠冷卻水腐蝕抑制劑監測,中華民國防蝕工程協會,水處理及腐蝕抑制劑研討會講義,(2006)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔