(3.92.96.236) 您好!臺灣時間:2021/05/09 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳懋松
研究生(外文):Mao-Sung Chen
論文名稱:鋁摻雜對磷酸鋰鐵基正極材料循環特性之影響
論文名稱(外文):Effects of Al3+ ion substitution of LiFe1-xAlxPO4/ MCMB on the cycle properties and capacity fading mechanism
指導教授:林鴻明林鴻明引用關係吳溪煌
指導教授(外文):Hong-Ming LinShe-Huang Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:73
中文關鍵詞:正極材料橄欖石結構電容衰退
外文關鍵詞:cathode materialsolivine structurecapacity fading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
以溶液法合成純相橄欖石結構LiFePO4,摻雜Al3+離子的LiFe1-xAlxPO4 (0.01 £ x £ 0.1)。在氮氣氣氛下燒結至700oC,以同步輻射01C SWLS - X-ray Powder Diffraction、ICP-OES及SEM分析合成粉末之結晶構造、材料組成及觀察粉末之表面形態。在合成的粉末中,以LiFe0.95Al0.05PO4在室溫下有最好循環充放電特性。探討Al3+離子摻雜對LiFePO4/ Li半電池和LiFePO4/ MCMB全電池循環特性之影響。從LiFePO4/ Li半電池循環特性與GSAS結果顯示,Al3+離子摻雜增加晶格常數使可逆電容量提昇。而從LiFePO4/ MCMB全電池電容衰退結果、高解析X-ray影像、和靜置試驗顯示,Al3+離子摻雜可以抑制Fe2+的溶出來提升全電池循環特性。
A solution method was used to synthesize LiFePO4 and Al3+-doped LiFe1-xAlxPO4 (0 £ x £ 0.1) powders. After heat-treatment at 700oC for 8 hours under N2 flowing atmosphere, the crystalline structure, compositions, and morphology of the prepared powders were investigated with the XRD patterns performed with 01C beamline of NSRRC of Taiwan, ICP-OES, and SEM. The powder with composition of LiFe0.95Al0.05PO4 shows the best cycling performance at room temperature among the prepared samples. The effects of Al3+-doping on the cycling performance of the LiFePO4/ Li coin-type cells and LiFePO4/ MCMB were investigated. From the cycling results of LiFePO4/ Li cells and the results of GSAS refinement, it was found the reversible capacity of LiFePO4 was increased by Al3+-substitution due to the enlargements of lattice parameter. From the results of capacity retention study for the LiFe1-xAlxPO4/ MCMB stacked cells, the high resolution X-ray image observation, and soaking study, it was revealed that the cycling performance of improvement in LiFe1-xAlxPO4/ MCMB cells by Al3+-substitution was attributed to the suppression of Fe2+-dissolution into LiPF6 electrolyte.
CONTENTS
CHINESE ABSTRACT I
ENGLISH ABSTRACT II
TABLE OF CONTENTS III
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER
1 INTRODUCTION 1
2 LITERATURE REVIEW 3
2-1 The principles of secondary Li-ion 3
battery
2-2 The cathode Materials for secondary 7
Li-ion battery
2-3 The anode materials for secondary Li-ion 13
battery
2-4 The liquid electrolyte 14
2-5 Improvement on electronic capacity of 18
LiFePO4
2-6 The effects of supervalent cations doping 22
2-7 The capacity fade of lithium ion batteries 23
3 EXPERIMENTAL 27
3-1 Synthesis of LiFe1-xAlxPO4 powders 27
3-2 Powder characterization 29
3-2-1 XRD analysis 29
3-2-2 Composition determination 29
3-3 Preparation of electrodes 29
3-3-1 Preparation of cathode 30
3-3-2 Preparation of anode 31
3-4 Soaking study 31
3-5 Assembly of the battery 32
3-5-1 Assembly of the coin-type cells 32
3-5-2 Assembly of the full cells 33
3-6 SEM observation for the LiFe1-xAlxPO4 33
3-7 High resolution X-ray images 33
4 RESULTS AND DISSCUSSION 35
4-1 Crystal line structure of the prepared 35
powders
4-2 Compositions of the prepared powders 42
4-3 SEM photographs of the prepared 43
powders
4-4 Cycling performance of the prepared 45
powders
4-5 Fe2+ ion dissolution from LiFe1-xAlxPO4 48
4-6 Results of capacity retention of the 51
LiFe1-xAlxPO4/ MCMB full cells
4-7 High resolution X-ray images 53
5 CONCLUSION 62
REFERENCE 63









LIST OF TABLES
Table 2-1 The possible reduction reactions of lithium salts 17
Table 4-1 Lattice constants of pure and LiFe1-xAlxPO4 41
powders
Table 4-2 The compositions of the prepared LiFe1-xAlxPO4 42
powders
Table 4-3 The concentration of Fe2+ dissolved into the 5 ml 49
1M LiPF6 in EC/ DEC electrolyte at soaking
temperature of 30 and 60oC










LIST OF FIGURES
Fig. 2-1 The illustration of the intercalation reaction: (a) no 4
reaction, (b) intercalation, (c) extraction reaction
Fig. 2-2 The principle of lithium ion battery 5
Fig. 2-3 The layer structure of LiCoO2 7
Fig. 2-4 Structure of (a) FePO4 and (b) LiFePO4 11
Fig. 2-5 The shrinking-core model with the juxtaposition of 13
the two phases and the movement of the phase
boundary
Fig. 3-1 Follow chart of powder preparation and 24
characterization
Fig. 4-1 XRD patterns of the prepared LiFe1-xAlxPO4 37
powders (0 £ x £ 0.1)
Fig. 4-2 XRD pattern of LiFe0.9Al0.1PO4 powder performed 38
with 01C beam-line of NSRRC of Taiwan
Fig. 4-3 The enlargements of the XRD pattern of 39
LiFe0.9Al0.1PO4 powder performed with 01C
beam-line of NSRRC and the standard patterns of
AlPO4
Fig. 4-4 Rietveld refinements with GSAS for 40
(a) Pure LiFePO4 (wRp: 6.97%, Rp: 5.12%),
(b) LiFe0.99Al0.01PO4 (wRp: 8.37%, Rp: 6.88%),
(c) LiFe0.97Al0.03PO4 (wRp: 5.44%, Rp: 4.21%),
(d) LiFe0.95Al0.05PO4 (wRp: 6.02%, Rp: 5.06%),
(e) LiFe0.93Al0.07PO4 (wRp: 6.81%, Rp: 5.58%),
(f) LiFe0.9Al01PO4 (wRp: 4.60%, Rp: 3.11%)
SEM photographs of (a) LiFePO4, (b)
Fig. 4-5 LiFe0.99Al0.01PO4, (c) LiFe0.97Al0.03PO4, (d) 44
LiFe0.95Al0.05PO4, (e) LiFe0.93Al0.07PO4, and (f)
LiFe0.9Al0.1PO4.
Fig. 4-6 The initial charge-discharge curves of the coin type 46
cells comprised with various LiFe1-xAlxPO4 powders
Fig. 4-7 Results of the capacity retention study for coin-type 47
cells comprised with LiFe1-xAlxPO4 powders
Fig. 4-8 Variation of the Fe2+ concentration with amount of 50
Al3+-substition for the LiFe1-x¬AlxPO4 electrodes
(about 100mg active material, moisture content:
4.0×103ppm) soaked in 5 ml 1M LiPF6 in EC/ DEC
electrolyte for 240h.
Fig. 4-9 Results of capacity retention study 52
LiFe1-xAlxPO4/MCMB cells for the cycled with
charging rate of 0.5C rate and discharging rate of
1.0C with cutoff voltage of 2.5 and 4.3V at room
temperature
Fig. 4-10 The hard X-ray image of the LiFePO4/MCMB cells 55
comprised with high moisture containing cathode
and 1.0 M LiPF6 electrolyte during the charging
state at room temperature
Fig. 4-11 The hard X-ray image of the LiFePO4/MCMB cells 56
comprised with low moisture containing cathode
and 1.0 M LiPF6 electrolyte during the charging
state at room temperature
Fig. 4-12 The hard X-ray image of the LiFePO4/MCMB cells 57
comprised with high moisture containing cathode
and 1.0 M LiPF6 electrolyte during the charging
state at 55oC
Fig. 4-13 The X-ray images of the Li-ion cells comprised with 58
high moisture containing (4000ppm) LiFe1-xAlxPO4
cathodes (a) x = 0, (b) x = 0.01, (c) x = 0.03, (d) x =
0.05, (e) x = 0.07, (f) x=0.10, MCMB anodes, and
1.0 M LiPF6 in EC/DEC (v/v=1/1) electrolyte as the
cells were as charged to 3.2-3.3V of initial cycle at
room temperature
Fig. 4-14 The X-ray images of the Li-ion cells comprised with 60
low moisture containing (1800ppm) LiFe1-xAlxPO4
cathodes (a) x = 0, (b) x = 0.01, (c) x = 0.03, (d) x =
0.05, (e) x = 0.07, (f) x=0.10, MCMB anodes, and
1.0 M LiPF6 in EC/DEC (v/v=1/1) electrolyte as the
cells were as charged to 3.2-3.3V of initial cycle at
room temperature
References
1.A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc. 144, (1997), p. 1189.
2.A. S. Andersson, B. Kalska, L. Haggstrom and J.O. Thomas, Solid State Ionics 130, (2000), p. 41.
3.A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, J. Electrochem. Soc. 144, (1997), p.1609
4.J. F. Martin, A. Yamada, G. Kobayashi, S.-I. Nishimura, R. Kanno, D. Guyomard, and N. Dupreb, Electrochemical and Solid-State Letters, 11, 1, (2008), A12.
5.A. Yamada, S.-C. Chung, and K. Hinokuma, J. Electrochem. Soc.,148, (2001), p. A224
6.S. Y. Chung, J. T. Bloking, and Y. M. Chiang, Nat. Mater., 2, (2002), p. 123.
7.S. F. Yang, P. Y. Zavalij and M. S. Whittingham, Electrochem. Commun. 3, (2001), p. 505.
8.J. Barker, M. Y. Saide and J. L. Swoyer, Electrochem. Solid-State Lett. 6, (2003), p. A53.
9.R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnikand and J. Jamnik, J. Electrochem. Soc. 152, (2005), p. A607
10.Z. Chen and J. R. Dahn, J. Electrochem. Soc. 149, (2002), p. A1184.
11.X. Z. Liao, Z. F. Ma, Y. S. He, X. M. Zhang, L. Wang and Y. Jiang, J. Electrochem. Soc. 152, (2005), p. A1969.
12.X. Z. Liao, Z. F. Ma, L. Wang, X. M. Zhang, Y. Jiang and Y. S. He, Electrochem. Solid-State Lett. 7, (2004), p. A522
13.A. S. Andersson, B. Kalskab, L. Häggströmb and J. O. Thomas, Solid State Ionics, 1, (2000), p. 41
14.K. Amine, J. Liu, and I. Belharouak, Electrochem. Commun. 7, (2005), p.669.
15.S.-H. Wu, Y.-T. Lai, " The effects of the moisture content of LiFePO4/C cathode and the addition of VC on the capacity fading of the LiFePO4/MCMB cell at elevated temperatures," 212th meeting of the Electrochemical Society, Oct. 7-Oct. 12 2007, Washington, DC.
16.D. W. Murphy, Mat. Res. Bull. 13, (1978), p. 1395
17.D. W. Murphy and P. A. Christian, Science, 205, (1979), p. 4407
18.M. S. Whittingham. , “Intercalation Chemistry,” M. S. Whittingham and A. J. Jacobson, Editor, Academic Press, New York (1982).
19.B. C. H Steele, in ibid., pp. 103-122.
20.L. Heyne, in ibid., pp. 123-139.
21.M. B. Armand, in ibid., pp. 665-673.
22.A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, (1997), p. 1188.
23.K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, J. Electrochem. Soc. 144, (1997), p. 1609.
24.Motorola University Training Course (AIE873).
25.K. Amine, J. Liu, I. Belharouuak, Electrochem. Communications, 7, (2005), p 669.
26.M. Piana, B. L. Cushing, J. B. Goodenough and N. Penazzi, Solid State Ionics 175 (2004), p. 233.
27.P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini and M. Pasquali, J. Electrochem. Soc. 149 (2002), p. A886.
28.S. Tajimi, Y. Ikeda, K. Uematsu, K. Toda and M. Sato, Solid State Ionics 175 (2004), p. 287.
29.T.H. Cho and H.T. Chung, J. Power Sources 133, (2004), p. 272.
30.H. J. Prman, P. J. Wiseman, Acta. Cryst. 40, (1984), p. 12
31.S.-H. Yang, L. Croguennec, C. Delmas, E. Chris Nelson and M. A. O’Keefe, Nature. Mat., 2, (2003), p.464.
32.Venkatraman, S., Manthiram, A., J. Solid State Chemistry 177, (2004), p. 4244.
33.Fan, Jiang. J. Power Sources 138, (2004), p. 288
34.M. Takahashi, H. Ohtsuka, K. Akuto, and Y. Sakurai. J. Electrochem. Soc. 152, (2005), p. A899
35.Elumalai, P., Vasan, H. N., Munichandraiah. N., Materials Research Bulletin 39, (2004), p. 1895.
36.M. Zhang, L.-F. Jiao, H.-T. Yuan, Y.-M. Wang, J. Guo, M. Zhao, W. Wang, X.-D. Zhou, Solid State Ionics 177, (2006), p. 3309.
37.T. Yi, X. Hu, K. Gao, J. 162, (2006), p. 636.
38.J. B. Goodenough, H. Y. Houg, J. A. Kafalas, Mat. Res. Bull. 11, (1976), p. 203.
39.A. Manthiram, J. B. Goodenough, J. Solid State Chem. 71, (1987) p. 349.
40.A. Manthiram, J. B. Goodenough, J. Power Sources 26, (1989), p. 403.
41.M. M. Thackeray, J. Electrochem. Soc. 144(5), 100(1997).
42.Y. Xia, M. Yoshio, J. Power Sources 66, 129 (1997).
43.H. Berg, O. Bergstrom, T. Gustafsson, E. M. Kelder, J. O. Thomas, J. Power Sources 68, 24 (1997).
44.M. R. Mancini, L. Petrucci, F. Ronci, P. P. Prosini, S. Passerini, J. Power Sources 76, 91 (1998).
45.J. Hunter, J. Solid State Chem. 39, 142 (1981).
46.H. M. Wu, J. P. Tu, Y. F. Yuan, Y. Li, X. B. Zhao, G. S. Cao, Scripta Materialia 52, 513 (2005).
47.L. F. Wang, C. C. Ou, K. A. Striebel, J. S. Chen, J. Electrochem. Soc. 150, A905 (2003).
48.B. L. He, S. J. Bao, Y. Y. Liang, W. J. Zhou, H. Li, H. L. Li, J. Solid State Chem. 178, 897 (2005).
49.T. Tsuji, H. Umakoshi, Y. Yamamura, J. Phys. and Chem. Solids 66, 283 (2005).
50.Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu, G. Chen, J. Phys. Chem. B 108, 18547 (2004).
51.S. H. Park, K. S. Park, S. S. Moon, Y. K. Sun, K. S. Nahm, J. Power Sources 92, 244 (2001).
52.J. R. Dahn, S. U. Von, M. W. Juzkow, H. A. Janaby, J. Electrochem. Soc.138, (1991), p. 2207.
53.C. Pouillerie, L. Croguennec, Ph. Biensan, P. Willmann and C. Delmas, J. Electrochem. Soc. 147, (2000), p. 2061.
54.J. Molenda, P. Wilk, Marzec, Solid State Ionics 146, (2002), p73
55.K. Ozawa, Solid State Ionics 69, (1994), p.212.
56.U. von Sacken, Paper presented at POWER '97, 5th International Conference on Power Requirements for Mobile Computing and Wireless Communications, Santa Clara, CA, Oct 12-15(1997).
57.M. Contestabile, M. Morselli, R. Paraventi, and R. J. Neat, J. Power Sources 119-121, (2003), p943-947.
58.S. S. Zhang, K. Xu, and T. R. Jow, Electrochem. Solid-State Lett. 5, (2002), p. A206-A208.
59.G. Ceder, S. K. Mishra, Electrochem. Solid State Lett. 2, (1999), p.A78.
60.J. R. Dahn, S. U. Von, M. W. Juzkow, H. A. Janaby, J. Electrochem. Soc.138, (1991), 2207.
61.H. Arai, M. Tsuda, Y. Sakurai, J. Power Sources 90, (2000), p.76.
62.J. Molenda, P. Wilk Marzec, Solid State Ionics 146, (2002), p73.
63.D. Shanmukaraj, G.X. Wang, R. Murugan, H.K.Liu, Mat. Sci. and Engineering B, 149, (2008), p.93.
64.G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou and J. H. Ahn, Electrochem. Acta, 50, (2004), p. 443.
65.Venkat Srinivasan, and John Newman, Electrochem. And Solid-State Lett. 9, (2006), p.A110.
66.M. N. Richard and J. R. Dahn, J. Electrochem. Soc., 146, (1999), p2068.
67.K. Tatsumi, N. Lwashita, H. Sakaebe, H. Shioyama, and S. Higuchi, J. Electrochem. Soc., 142, (1995), p. 716
68.M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, and H. Wada, J. Power Sources, 26, (1989), p. 545.
69.J. R. Dahn, A. K. Sleigh, H Shi, J. N. Reimers, Q. Zhong, and B. M. Way, Electrochem. Acta, 38, (1993), p. 1179.
70.J. R. Dahn, A. K. Sligh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong, and U. von Sacken, Lithium Batteries- New Materials, Developments and Perspectives, Elsevier, Amsterdam (1994), p.1.
71.E. Peled, D. Golodnitsky, and G. Ardel, J. Electrochem. Soc., 144, (1997), p. L208
72.K. Kanamura, Hiroshi Tamura, Soshi Shiraishi and Zen-ichiro Takehara, J. Electroanal. Chem., 394, (1995), p. 49.
73.L. A. Dominey, CH4. in Lithium batteries. New materials, Developments and Perspectives, G. Pistioa, Ed., Elsevier, Amsterdam.
74.U. Heider, R. Oesten, M. Jungnitz, J. Power Sources, 119, (1999), p.81.
75.D. Aurbach, et al., J. Power Sources, 68, (1997), p.91.
76.C. A. Vincent, Solid State Ionics, 134, (2000), p.159.
77.J. M. Tarascon and M. Armand, Nature, 454, (2001), p.359.
78.J. Barthel and H. J. Gores, Ch7 in Hand Book of Battery Materials, J. O. Besenhard, Ed., Wiley-VCH, Wemheim (1999).
79.P. Arora, R. E. White, and M. Doyle, J. Electrochem. Soc., 145, (1998), p.3647.
80.D. Aurbach, Y. Em-Eli, 0. Chusid, Y. Carmeli, M. Babai, and H. Yamin, J. Electrochem. Soc., 141, (1994), 603.
81.Chusid, Y. Em-Eli, and D. Aurbach, J. Power Sources, 47, (1993), p.43.
82.D. Aurbach, B. Markovsky, A Shechter, and V. Em- Eli, J. Electrochem. Soc., 143, (1996), p.3809.
83.N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, and M. Armand, Proceedings of the 196th ECS Meeting, Hawaii, 17–22 October, 1999.
84.H. Huang, S. C. Yin, and L. F. Nazar, Electrochem. And Solid-State Lett., 4, (2001), p.A170.
85.F. Croce A. D’ Epifanio, J. Hassoun, A. Deptula T, Olczac, and B, Scrosati, Electrochem. And Solid-State Lett., 5, (2002), p.A47.
86.G. X. Wang, S. Bewlay, J. Yao, J. H. Ahn, S. X. Dou, H. K. Liu, Electrochem. Solid-State Lett., 7, (2004), p.A503.
87.H. Liu, Q. Cao, L. J. Fu, C. Li, Y. P. Wu, H. Q. Wu, Electrochem. Commun., 8, (2006) 1553.
88.Kuei-Feng Hsu, Sun-Yuan Tsay, Bing-Joe Hwang, J. Power Sources 146, (2005), p. 529.
89.K. Araki, N. Sato, J. Power Sources 124, (2003), p124.
90.G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, D. Larcher, and J. M. Tarascon, J. Power Sources, 69, (1997), p.11.
91.K. Araki, N. Sato, J. Power Sources, 124, (2003), p.124.
92.D. H. Jang, Y. J. Shin, and S. M. Oh, J. Electrochem. Soc., 143, (1996), p.2204.
93.D. H. Jang and S. M. Oh, J. Electrochem. Soc., 144, (1997), p.3342.
94.E. Wang, D. Ofer, W. Bowden, N. Iltchev, R. Moses, and K. Brandt, J. Electrochem.Soc., 147 (2000), p.402.
95.M. Broussely, F. Perton and J. Labat, J. Power Sources 43, (1993), p. 209.
96.D. Zhang, B. S. Haran, A. Durairajan, R. E. White, Y. Podrazhansky, and B. N.Popov, J. Power Sources, 91, (2000), p.122.
97.P. Ramadass, B. Haran, R. White, Branko N. Popov, J. Power Sources 112, (2002), p.614.
98.S.-H. Wu, K-M Hsiao, W-R Liu, Journal of Power Sources, 146, (2005), p.550.
99.I. Belharouak, C. Johnson, K. Amine, Electrochem. Commun., 7, (2005), p.983.
100.Denis Y. W. Yu, Z. Kazunori Donoue, Takao Inoue, Masahisa Fujimoto, and Shin Fujitani. J. Electrochemical Society, 153(5), (2006), p.A835.
101.W.-L. Tsai, P. C. Hsu, Y. Hwu, C. H. Chen, L. W. Chang, J. H. Je, Hong-Ming Lin, A. Groso and G, Nature, May 9, (2002), p. 139.
102.C. W. Ong, Y. K. Lin, and J. S. Chen, J. Electrochem. Soc., 154, (2007), p.A527.
103.T. K., S. O., J.- I Yamaki, J. Power Sources 156, (2006), p. 547.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔