(3.235.245.219) 您好!臺灣時間:2021/05/10 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:施光哲
研究生(外文):Guang-Jhe Shih
論文名稱:使用Fe-Co/MgO催化劑以化學氣相沉積法成長奈米碳管
論文名稱(外文):Synthesis of Carbon Nanotubes using Fe-Co/MgO Catalysts by Chemical Vapor Deposition
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:奈米碳管化學氣相沉積法純化
外文關鍵詞:carbon nanotubeschemical vapor depositionpurification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究利用含浸法將氧化鎂含浸於鐵鈷溶液中製備Fe-Co/MgO催化劑,並利用化學氣相沉積法於不同成長溫度下成長奈米碳管。Fe-Co/MgO催化劑之製備使用固定莫耳濃度而不同含量的鐵鈷比。由碳產率結果發現,Fe/MgO催化劑在810℃時可有效生長奈米碳管,且成長之奈米碳管型態為柱狀型態,當溫度增高時,其碳產率明顯下降,且型態為網狀分佈。相較於Fe/MgO催化劑,Fe-Co/MgO及Co/MgO催化劑較佳之成長溫度為850℃時,但奈米碳管以網狀型態披覆於催化劑表面,其碳產率較Fe/MgO (810℃)為低;但其於各不同成長溫度下的催化活性差異並不大。而由Raman光譜及TEM的結果顯示,Fe-Co/MgO催化劑隨著Co含量的增加,可得到較低直徑的管徑分佈。純化奈米碳管之實驗顯示,奈米碳管先經雙氧水處理能有效去除沉積於碳管表面及催化劑上的非晶質碳,利於鹽酸將氧化鎂粉末於產物中移除掉,且純化效果較硝酸為佳。
Abstract
Fe-Co/MgO catalysts were prepared by immersion of MgO powders in the solution containing Fe and Co, and carbon nanotubes (CNTs) were synthesized using chemical vapor deposition. Different Fe-Co/MgO catalysts with the same catalyst concentration but different Fe/Co ratios were used. Experimental results show that the highest carbon yield was obtained when using the Fe/MgO catalyst at the growth temperature of 810℃ and that compacted CNT bundles of several micrometers in length, protruded out of the catalyst surface, were observed. When the growth temperature was raised, the carbon yield decreased and the CNT bundle had a network-like morphology. For the Fe-Co/MgO and Co/MgO catalysts, better growth temperature was 850℃ but the difference was small between 800℃ and 950℃. CNTs with a smaller diameter distribution were observed when the Co content in the Fe-Co/MgO catalyst was increased according to the Raman and TEM analyses. Better purification result was obtained when using H2O2 and HCl two step treatments as compared to HNO3 treatment. The treatment of H2O2 can remove the amorphous carbon and facilitate the removal of catalysts by HCl.
總目錄
中文摘要 I
英文摘要 II
總目錄 III
圖目錄 VI
表目錄 X
緒論 1
1.1前言 1
1.2研究動機與目的 1
1.3各章提要 2
第二章 文獻回顧 4
2.1奈米碳管的介紹 4
2.2影響奈米碳管成長的因素 5
2.2.1催化劑金屬的影響 5
2.2.2 Fe-Co/MgO催化劑 5
2.2.3 Fe/MgO、Co/MgO催化劑 6
2.2.4 Fe-Co催化劑的溶碳能力 7
2.3催化劑的還原溫度 7
2.4硫於催化劑中扮演的角色 8
2.5奈米碳管的純化 8
第三章 實驗流程與方法 18
3.1實驗流程 18
3.2實驗方法 19
3.2.1儀器設備 19
3.2.2催化劑的配製 19
3.2.3奈米碳管的製程 20
3.2.4奈米碳管的純化 20
3.3儀器分析 21
3.3.1場發射掃瞄式電子顯微鏡 21
3.3.2熱重分析 21
3.3.3高解析度穿透式電子顯微鏡 21
3.3.4拉曼光譜儀 22
第四章 結果與討論 25
4.1不同Fe-Co比例對碳管成長的影響 25
4.1.1碳產率百分比 25
4.1.2表面型態 26
4.1.3 Raman光譜分析 27
4.1.4 TGA/DSC分析 28
4.1.5 HR-TEM分析 29
4.2 不同金屬濃度對碳管成長的影響 32
4.2.1表面型態 32
4.2.2 Raman光譜分析 33
4.2.3 HR-TEM分析 34
4.3奈米碳管之純化 35
4.3.1表面型態 35
4.3.2 Raman光譜分析 36
4.3.3 TGA/DSC分析 37
第五章 結論 69
參考文獻 70








圖目錄
圖1-1 Iijima利用電弧放電製備的奈米碳管:(a)奈米碳管的同心圓結構
(b)穿透式電子顯微鏡下的奈米碳管 3
圖1-2 (a)zigzag碳管(b)armchair碳管(c)chiral碳管 3
圖2-1 奈米碳管的原子結構模型 12
圖2-2 不同層數的奈米碳管結構示意圖(a)單層奈米碳管(b)雙層奈米碳
管(c)多層奈米碳管 12
圖2-3 Fe、Co、Ni催化劑成長奈米碳管之拉曼光譜分析 13
圖2-4 不同催化劑(Co/Fe/Mo)成長奈米碳管之柱狀圖示 14
圖2-5 (a)鐵-碳相圖、(b)鈷-碳相圖 15
圖2-6 純化前後奈米碳管TEM圖(a)純化處理前(b)雙氧水浸泡24hr後
(c)雙氧水浸泡72hr後 16
圖2-7 氧化退火熱處理 (a)原始成長之奈米碳管(b)經退火處理5分鐘(c)
經退火處理40分鐘 17
圖3-1 實驗流程圖 18
圖3-2 實驗裝置示意圖 23
圖3-3 製程之氣氛及程控時間示意圖 23
圖3-4 (a)純化奈米碳管示意圖(b)迴流裝置示意圖 24
圖4-1 Fe/MgO、Fe-Co/MgO與Co/MgO催化劑於不同成長溫度下成長
奈米碳管之產率分佈圖 38
圖4-2 5wt%不同Fe-Co含量催化劑,經CVD810℃後產物之FEG-SEM
圖:(a)Fe/MgO、(b)Fe-Co/MgO、(c)Co/MgO 39
圖4-3 5wt%不同Fe-Co含量催化劑,經CVD850℃後產物之FEG-SEM
圖:(a)Fe/MgO、(b)Fe-Co/MgO、(c)Co/MgO 40
圖4-4 5wt%不同Fe-Co含量催化劑,經CVD900℃後產物之FEG-SEM
圖:(a)Fe/MgO、(b)Fe-Co/MgO、(c)Co/MgO 41
圖4-5 5wt%不同Fe-Co含量催化劑,經CVD950℃後產物之FEG-SEM
圖:(a)Fe/MgO、(b)Fe-Co/MgO、(c)Co/MgO 42
圖4-6 5wt%不同Fe-Co含量催化劑,經CVD810℃後產物之拉曼光譜分
析圖:(a)Fe/MgO、(b)Fe-Co/MgO、(c)Co/MgO 43
圖4-7 5wt%不同Fe-Co含量催化劑,經CVD850℃後產物之拉曼光譜分
析圖:(a)Fe/MgO、(b)Fe-Co/MgO、(c)Co/MgO 44
圖4-8 5wt%不同Fe-Co含量催化劑,經CVD900℃後產物之拉曼光譜分
析圖:(a)Fe/MgO、(b)Fe-Co/MgO、(c)Co/MgO 45
圖4-9 5wt%不同Fe-Co含量催化劑經CVD810℃後產物之DSC檢測分
析圖:(1)Fe/MgO、(2)Fe-Co/MgO、(3)Co/MgO 46
圖4-10 5wt%不同Fe-Co含量催化劑經CVD810℃後產物之TGA檢測分
析圖:(1)Fe/MgO、(2)Fe-Co/MgO、(3)Co/MgO 46
圖4-11 5wt%不同Fe-Co含量催化劑經CVD900℃後產物之DSC檢測分
析圖:(1)Fe/MgO、(2)Fe-Co/MgO、(3)Co/MgO 47
圖4-12 5wt%不同Fe-Co含量催化劑經CVD900℃後產物之TGA檢測分
析圖:(1)Fe/MgO、(2)Fe-Co/MgO、(3)Co/MgO 47
圖4-13 5wt% Fe/MgO催化劑,經CVD810℃後之HR-TEM影像圖 48
圖4-14 5wt% Co/MgO催化劑,經CVD810℃後之HR-TEM影像圖 49
圖4-15 TEM影像中奈米碳管於810℃時直徑分佈圖 50
圖4-16 5wt% Fe/MgO催化劑,經CVD900℃後之HR-TEM影像圖 51
圖4-17 5wt% Fe-Co/MgO及Co/MgO催化劑,經CVD900℃後HR-TEM
影像圖 52
圖4-18 TEM影像中奈米碳管於900℃時直徑分佈圖 53
圖4-19 5wt% Fe-Co/MgO催化劑,經不同成長溫度(850~950℃)後產物之
HR-TEM影像圖 54
圖4-20 2.5wt% Fe-Co/MgO催化劑,經CVD成長後產物之FEG-SEM圖:
(a)810℃、(b)850℃、(c)900℃、(d)950℃ 55
圖4-21 5wt% Fe-Co/MgO催化劑,經CVD成長後產物之FEG-SEM圖:
(a)810℃、(b)850℃、(c)900℃、(d)950℃ 56
圖4-22 7.5wt% Fe-Co/MgO催化劑,經CVD成長後產物之FEG-SEM圖:
(a)810℃、(b)850℃、(c)900℃、(d)950℃ 57
圖4-23 10wt% Fe-Co/MgO催化劑,經CVD成長後產物之FEG-SEM圖:
(a)850℃、(b)900℃、(c)950℃ 58
圖4-24 以不同金屬濃度Fe-Co/MgO含量催化劑,經CVD810℃後產物之
拉曼光譜分析圖:(a)2.5wt%、(b)5wt%、(c)7.5wt% 59
圖4-25 以不同金屬濃度Fe-Co/MgO含量催化劑,經CVD900℃後產物之
拉曼光譜分析圖:(a)2.5wt%、(b)5wt%、(c)7.5wt% 60
圖4-26 2.5wt% Fe-Co/MgO催化劑,經CVD900℃後之HR-TEM影像圖 61
圖4-27 5wt% Fe-Co/MgO催化劑,經CVD900℃後之HR-TEM影像圖 62
圖4-28 7.5wt% Fe-Co/MgO催化劑,經CVD900℃後之HR-TEM影像圖 63
圖4-29 奈米碳管經過鹽酸酸洗後的表面型態FEG-SEM圖,(a)原始成
長後的表面型態圖(b)經雙氧水純化後的表面型態圖(c)經雙氧水+
鹽酸純化後的表面型態圖 64
圖4-30 增加迴流步驟的奈米碳管經過鹽酸酸洗後的表面型態FEG-SEM圖,(a)原始成長後的表面型態圖(b)經雙氧水純化後的表面型態
圖(c)經雙氧水+鹽酸純化後的表面型態圖 65
圖4-31 奈米碳管經過硝酸酸洗後的表面型態FEG-SEM圖,(a)原始成長
後的表面型態圖(b)經硝酸純化一天後的表面型態圖(c)經硝酸純
化五天後的表面型態圖 66
圖4-32 奈米碳管純化之Raman光譜圖,(a)純化過程中未經迴流步驟(b)純化過程中增加迴流步驟;(1)原始成長後的奈米碳管(2)經雙氧水
純化(3)經雙氧水+鹽酸純化 67
圖4-33 奈米碳管純化後之TGA分析圖 68











表目錄
表2-1 Fe、Co、Ni催化劑於950℃時,以化學氣相沉積法通入乙炔氣氛
比較成長速率、碳管直徑及碳管密度的不同 13
表4-1 不同酸洗條件對奈米碳管純化前後產物之殘重比較 35
參考文獻
[1]Kroto H, Heath J, O’Brien S, Curl R, Smalley R. Buckyminister-fullerene. Nature 1985,318;162-3.
[2]Kratschmer W, Lamp L, Fostiropoulos K, Huffman D. Solid C60: a new form of carbon. Nature 1991,347;354-8.
[3]Tarasov B, Muradyan V, Shul’ga Y, Krinichnaya E, Kuyunko N, Lai H. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co-Ni and YNi catalysts. Carbon 2003,41;1357-64.
[4]Yudasaka M, Ichihashi T, Komastsu T, Iijima S. Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem Phys Lett 1999,299;91-6.
[5]Resasco D, Herrera J, Balzano L. Decomposition of carbon-containing compounds on solid catalysts for single-walled nanotube production. Journal of Nanoscience and Nanotechnology 2004,4;398-407.
[6]Lamourous E, Serp P, Kalck P. Catalytic Routes Towards single wall carbon nanotubes. Catalysis Reviews 2007,49;341-405.
[7]Kathyayini H, Willems I, Fonseca A, Nagy J, Nagaraju N. Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes. Catalysis Commications 2006,7;140-7.
[8]Ning Y, Zhang X, Wang Y, Sun Y, Shen L, Yang X, Tendeloo G. Bulk production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst. Chemical Physics Letters 2002,366;555-60.
[9]Valles C, Perez-Mendoz M, Martinez M, Maser W, Benito A. CVD production of double-wall and triple-wall carbon nanotubes. Diamond & Related Materials 2006, 16;1087-90.
[10]Avdeeva L, Kochubey D, Shaikhutdinov S. Cobalt catalysts of methane decomposition: accumulation of the filamentous carbon. Applied Catalysis A: General 1999;43-51.
[11]Wei J, Ci L, Jiang B, Li Y, Zhang X, Zhu H, et al. Preparation of highly pure double-walled carbon nanotubes. J Mater Chem 2003,13;1340-4.
[12]Cheol J, Jeunghee P, Jeong A. Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chemical Physics Letters 2002,360;250–5.
[13]Liu Z, Hao Y, Yan C, Jin Z, Li Q. A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material.J. Mater. Chem 2002,12;1179–83.
[14]Colomer J, Stephan C, Lefrant S, Tendeloo G, Willems I, Konya Z, et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters 2000,317;83-9.
[15]Hamada N, Sawada S, Oshiyana A. New one-dimensional conductors Graphitic microtubules. Physical Review Letters 1992,69,10;1579-81.
[16]Kathyayini H, Willems I, Fonseca A, Nagy J, Nagaraju N. Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes. Catalysis Commications 2006,7;140-7.
[17]Yan H, Li Q, Zhang J, Lin Z. Possible tactics to improve the growth of single-walled carbon nanotubes by chemical vapor deposition. Carbon 2002,40; 2693–8.
[18]Unalan1 H, Chnowalla M. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 2005,16;2153–63.
[19]Matsumoto K, Murakami T, Isshiki T, Kisoda K, Harima H. Synthesis and Raman study of double-walled carbon nanotubes. Diamond & Related Materials 2007,16; 1188–91.
[20]Zhang L, Qi X, Qin Y, Ma Z. 單質硫的催化性能. Journal of Tianjin University.
2001,34;827-9.
[21]Tibbets G, Balogh M. Increase in yield of carbon fibres grown above the iron-carbon eutectic. Carbon 1999,37;241-7.
[22]慈立杰. 浮動催化法碳納米管的製備及晶化行為的研究:[博士學位論文].北京:清華大學,2000.
[23]Hua C, Yao K, Liang J. Influence of acid treatments on the activity of carbon nanotube-supported catalysts. Carbon 2003,41;858-60.
[24]Chattopadhyay D, Galeska I, Papadimitrakopoulos F. Complete elimination of metal catalysts from single wall carbon nanotubes. Carbon 2002,40;985–8.
[25]Li F, Cheng H, Xing Y, Tan P, Su G. Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons. Carbon 2000,38;2041–5.
[26]Andrews R, Jacques D, Qian D, Dickey E. Purification and structural annealing of multi-walled carbon nanotubes at graphitization temperatures. Carbon 2001,39;1681–7.
[27]Cui S, Canet R, Derre A, Couzi M, Delhaes P. Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon 2003,41;797–809.
[28]Hu H, Zhao B, Mikhail E. Robert I, Haddon C. Nitric Acid Purification of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003,107;13838-42.
[29]Feng Y, Zhou G, Wang G, Qu M, Yu Z. Removal of some impurities from carbon nanotubes Chemical Physics Letters 2003,375;645–8.
[30]Liu Y, Gao L, Sun J, Zheng S, Jiang L, Wang Y, et al. A multi-step strategy for cutting and purification of single-walled carbon nanotubes. Carbon 2007,45;1972–8.
[31]Pang L, Saxby J, Chatfield P. Thermogravimetric analysis of carbon nanotubes and nanoparticles. The Journal of Physical Chemistry 1993,97;27-8.
[32]Tsang S, Hairis P, Green M. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 1993,362;520-2.
[33]Park Y, Choi Y, Kim K, Chung D, Bae D, An K, et al. High yield purification of multi-walled carbon nanotubes by selective oxidation during thermal annealing. Carbon 2001,39;655–61.
[34]Harutyunyan A, Pradhan B, Chang J, Chen G, Eklund P. Purification of Single-Wall Carbon Nanotubes by Selective Microwave Heating of Catalyst particles. J. Phys. Chem. B 2002,106;8671-5.
[35]Shi Z, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y, et al. Purification of Single-Wall Carbon Nanotubes. Solid State Commum 1999,112;35-7.
[36]Li J,Wang Y, Wang D, Wei F. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 2004,42;2375-83.
[37]Li J, Zhang Y. A simple purification for single-walled carbon nanotubes. Phys E 2005,28;309-12.
[38]Chen C, Chen C, Chen C-Ming, Chung F. Modification of multi-walled carbon nanotubes by microwave digestion method as electrocatalyst supports for direct methanol fuel cell applications. Electrochemistry Communications 2007,9;159-63.
[39]成會明. ”納米碳管製備、結構、物性與應用” ,化學工業出版社,2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔