(18.206.238.77) 您好!臺灣時間:2021/05/17 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林源憶
研究生(外文):Yuan-Yi Lin
論文名稱:以產品測試建立3C凸轂之多品質優化設計研究
論文名稱(外文):OPTIMIZATION DESIGN OF MULTI-CRITERIA 3C BOSS THROUGH PRODUCT TESTING
指導教授:王明庸王明庸引用關係
指導教授(外文):Ming-Yung Wang
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:90
中文關鍵詞:凸轂倒傳遞類神經網路基因演算法田口實驗法TOPSIS賽局理論
外文關鍵詞:BossBack-Propagation Neural NetworkGenetic A
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對塑膠製品中凸轂的尺寸設計參數與品質考量問題,而凸轂的強度常為設計時所追求的目標,本研究以建立塑膠射出產品之凸轂多品質優化設計研究,在多目標考量下尋求最適凸轂參數組合。
本研究針對凸轂所能承受的力量為品質的考量下,透過倒傳遞神經網路,建立品質預測機制;針對特定品質目標(軸向容許力、側向容許力、最大鎖附扭力),使用基因演算法結合倒傳遞類神經網路尋求特定品質目標之設計參數組合(外徑、內徑、高度、螺絲尺寸);使用田口法與理想解類似度順序偏好法(TOPSIS)整合多品質目標,在多目標考量下,決定最適參數組合,建構一套可靠之凸轂品質預測機制。以賽局理論進行任兩人(雙品質)之協議賽局,經議價賽局概念策略協議上之重點,在優先策略的組合下即可找出最佳協議組合,以協調衝突獲取多人(多品質)多策略之優化方案,發展並確認多品質3C凸轂設計之創新優化機制。
結合類神經網路與基因演算法技術,建立品質預測機制,在提供數據範圍內皆有9成的準確度,經由賽局理論優化結果在整體優勢排名第二,效果相當不錯。藉由本研究之成果,建立凸轂設計參數之參考依據,並提供於實務作業,避免不適設計,以減少試模的次數與費用,縮短業界塑膠產品射出模具的開發時間,有效減少成本,提昇產業競爭力。
This research considers the problem to size design parameter and quality of the Boss in the plastic products, and the strength of Boss often is design pursue of target, this research with set up the plastic projection product of multi-criteria Boss optimization design, under many target considerations, seek the parameter alignment of the optimum Boss.
This research aims at the force that the Boss cans bear to descend for the consideration of quality , through Back-Propagation Neural Network set up the mechanism of quality predicts. Aim at a particular quality target(allowed axial tensile force, side tensile force, maximum attaching torque force), use Genetic Algorithm to combine Back-Propagation Neural Network of the combination of the design parameter that looks for a particular quality target(outside diameter, inside diameter, height, screw size), Use the Taguchi Method and TOPSIS theory to combine many quality target, under many target considerations determine the optimum parameter alignment, Build the reliable Boss quality of predicts mechanism. Take the post as two people (double quality) in Game Theory of the agreement Game, In the concept tactics the focal points of agreement through bargaining position game, it can last agreement associations best at associations of tactics preferential,in order to coordinate conflict obtain to many people(Much quality) of the optimization scheme of many tactics, develop and confirm many quality 3C Boss were designed innovate the mechanism of optimizing.
Combining type neural network and Genetic Algorithm technology and set up the quality predicts mechanism, all there is ninety percent accuracy in offering the range of data, it ranks the second in the whole advantage optimizing the result via being comparable to the Game theory, the result is pretty good. With the achievement of this research, set up the reference basis of the Boss design parameter, prevent the improper design, in order to reduce and try number of times and expenses of the mold, shorten construction period when the plastic products of industry shoot the mold. Reduce the cost of effectively and promote industry's competitiveness.
目錄

中文摘要 I
英文摘要 III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 文獻探討 4
1.5 論文架構 8
第二章 研究背景 9
2.1 凸轂鑑別 9
2.2 品質預測方案 12
2.2.1 類神經網路 13
2.2.2 基因演算法 19
2.3 最適設計方案 23
2.3.1 田口實驗計劃法 23
2.3.2 TOPSIS理論 27
2.3.3 賽局理論 30
第三章 研究規劃 37
3.1 設計品質預測 37
3.2 設計參數搜尋 43
3.3 田口直交表規劃 47
3.4 賽局優化策略 48
第四章 結果與討論 54
4.1 系統分析 54
4.2 模擬結果 62
4.3 研究討論 67
第五章 結論與展望 69
參考文獻 70
作者簡歷 76
參考文獻
[1] 廖哲新,”塑膠成型製品中凸轂強度設計之研究”,大同大學機研所碩士論文,2007
[2] Hwang, M. W., Kim, M. H., and Choi, J. Y. ,“Second-order Multilayer Perceptrons and Its Optimization With Genetic Algorithms.”, Proceedings of the 2000 Congress on Evolutionary Computation,Vol. 1,pp. 652-658, 2000.
[3] Enab, Y. M. ,“Genetic Algorithm for Identifying Self-generating Radial basis Neural Networks.”, Fourth International Conference on Artificial Neural Network, pp. 65-70 , 1995.
[4] Petridis, V., Paterakis, E., and Kehagias, A. A. ,“Hybrid Neural-genetic Multimodel Parameter Estimation Algorithm.”, IEEE Transactions on Neural Networks, pp. 862-876, 1998.
[5] G.C. Luh and C.Y. Wu ,“Non-Linear System Identification Using Genetic Algorithms.”, Proc. Instn Mech. Engrs, Part I, Journal of Systems and Control Engineering, pp. 105-117, 1999.
[6] G..C. Luh and C.Y. Wu ,“Inversion Control of Non-Linear System With An Inverse NARX Model Identified Using Genetic Algorithms.”, Proc. Instn Mech. Engrs, Part I, Journal of Systems and Control Engineering, pp. 259-271, 2000.
[7] Li, Y., Sundarajan, N., and Saratchandran, P. ,“Dynamically Structured Radial basis Function Neural Networks for Robust Aircraft Flight Control.”, Proceedings of the 2000 American Control Conference , Vol. 5, pp. 3501-3505, 2000.
[8] Akhmetov, D. F., Dote, Y., and Ovaska, S. J. ,“Fuzzy Neural Network with General Parameter Adaptation for Modeling of Nonlinear Time-series.”, IEEE Transactions on Neural Networks, pp. 148-152, 2001.
[9] Sousa, J. M., and Setnes, M. ,“Model Predictive Control: A Data-driven Approach Using Simple Fuzzy Tools.”, The Ninth IEEE International Conference on Fuzzy Systems , Vol. 2, pp. 1017-1020 , 2000.
[10] Wang, H.W., He, H., and Huang, K.D. ,“A Method of Fuzzy Modeling for Non-linear Systems.”, Proceedings of the 3rd World Congress on Intelligent Control and Automation, Vol. 3, pp. 2163-2166, 2000.
[11] Lee, H. S.,“On System Identification Via Fuzzy Clustering for Fuzzy Modeling.”, IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, pp. 1956-1961, 1998.
[12] Runkler, T.A. and Palm R.H. ,“Identification of Nonlinear Systems Using Regular Fuzzy c-elliptotype Clustering.”, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, Vol.2, pp. 1026 -1030 , 1996.
[13]王進德、蕭大全,類神經網路與模糊控制理論入門,全華科技圖書股份有限公司,2002。
[14]林文修,”演化式類神經網路為基底的企業危機診斷模型:智慧資本之運用”,國立中央大學資訊管理學系博士論文,2000。
[15]范佐松,”應用類神經網路於流通業商品採購建議之研究”,天主教輔仁大學資訊管理學系在職專班碩士論文,2004。
[16]鍾添東、徐弘光、溫中榮,遺傳演算法於結構最佳化設計之應用,中國機械工程學會第十五屆學術研討會,pp. 339-345,1998。
[17] T. J. Ko and Kim H. S. “Autonomous Cutting Parameter Regulation Using Adaptive Modeling and Genetic Algorithms,” Precision Engineering, Vol. 22 , pp. 243-251, 1998.
[18]王柏村、林義勝、彭耀哲,“遺傳學演算法在螺栓組合結構最佳化之應用”,屏東技術學院學報第三卷第一期,pp. 1-9,1994。
[19]曹以正、陳家豪,“遺傳演算法於機械元件最佳化設計之應用”,中國機械工程學會第八屆學術研討會,pp. 715-720,1991。
[20]鍾添東、徐弘光、溫中榮, “遺傳演算法於結構最佳化設計之應用”,中國機械工程學會第十五屆學術研討會,pp. 339-345,1998。
[21]陳家豪、李志光,「遺傳演算法於設計規則學習之應用」,中國機械工程學會第十二屆學術研討會,pp. 797-804,1995。
[22] Rasmusen, E., 楊家彥、張建一、吳麗真合譯,賽局理論與訊息經濟,五南圖書出版股份有限公司, 2003.
[23]禮輝煌,“田口方法-品質設計的原理與實驗”,高立圖書有限公司2000。
[24] Reddy,P.B.S.,Nishina,K.and Subash Babu,A.,“Unification of Robust Design and Goal Programming for Multiresponse Optimization:a case study”, Quality and Reliability Engineering International,13 ,pp. 371-383, 1997.
[25] Tong,L.I.,Su,C.T.and Wang,C.H.,“The Optimization of Mulit-Response Problems in Taguchi Method,”International Journal of Quality & Reliability Management ,14(4), pp. 367-380, 1997.
[26]吳澄祥,”國內航空公司個案併購的價值評估與策略-實質選擇權與賽局理論的應用”,2004。.
[27]巫和懋,”經濟教室”,工商時報,2005。
[28]葉怡成,類神經網路模式應用與實作,第7 版,儒林圖書公司,台北市,2000。
[29]湯玲郎,施並洲,”灰關聯分析、類神經網路、案例推理法於財務危機預警模式之應用研究”,中華管理評論,Vol.4, No.2, pp. 25-37,2001。
[30] J.H. Holland, Adaptation in Natural and Artificial System, Ann Arbor, MI, The University of Michigan Press, 1975.
[31] Y. Koren, T. R. Ko, K. Danai, A. G. Ulsoy, Frank wear estimation under varying cutting conditions, ASME Journal of Dynamic Systems Measurement and Control, 113, pp. 300-307, 1991.
[32]蘇朝墩,品質工程,中華民國品質學會,2002。
[33] D.C. Montgomery, Design and Analysis of Experiments, Wiley, Singapore, 1991.
[34]禮輝煌,“田口方法-品質設計的原理與實驗” ,高立圖書有限公司,2000。
[35]張志昌,”應用田口法於大型引伸板件最佳壓板結構之有限元素分析”,國立中興大學機械工程系碩士論文,2000。
[36]李允中、王小璠、蘇木春,模糊理論及其應用,全華圖書,2002。
[37] John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, 1944.
[38] Shapley, L. S., "A Value for n-Person Games", Contributions to the Theory of Games Volume II, ed. by Kuhn, H. W. and Tucker, A. W., Princeton University Press, Princeton, NJ, 1953.
[39] D. Gillies, Some theorems on n-person games, Ph.D. thesis, Princeton University, Department of Mathematics, 1953.
[40] Eric Rasmusen, Games and Information: An Introduction to Game Theory, Blackwell Publishers, 1989.
[41]巫和懋、夏珍, 賽局高手—全方位策略與應用,時報出版,2003.
[42] Kreps, David M, “Game Theory and Economic Modeling”, Oxford: Clarendon Press, 1992.
[43] Nash, J., "Equilibrium Points in n-Person Game", Proceedings of the National Academy of Sciences, Vol.36, pp. 48-49, 1950.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top