(3.237.48.165) 您好!臺灣時間:2021/05/09 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏智洋
研究生(外文):Chih-Yang Yen
論文名稱:擋板配置對矩形消音器性能影響之實驗研究
論文名稱(外文):EXPERIMENTAL STUDY ON THE PERFORMANCE OF RECTANGULAR MUFFLERS WITH DIFFERENT PLACEMENT OF BAFFLES
指導教授:張英俊張英俊引用關係邱銘杰
指導教授(外文):Ying-Chun ChangMin-Chie Chiu
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:87
中文關鍵詞:角度消音材消音器噪音減低擋板
外文關鍵詞:absorbing materialsbaffleanglemufflernoise reduction
相關次數:
  • 被引用被引用:6
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在探討垂直擋板間隙和消音材片數與角度對於非傳統矩形消音器消音性能之影響。藉由改變垂直擋板間隙、消音材片數、消音材角度等參數組成之各式消音器內置,作消音性能實驗,並將實驗數據繪成噪音減低圖,用以比較消音器於不同內置型式下之噪音減低量。
首先以消音材片數與前擋板間距離為變異參數,發現消音材片數增加與擋板間距增加對於消音器消音性能有顯著提升,而擋板間距越窄對於消音性能並無顯著幫助;此外,針對不同消音材角度與消音器前擋板間距不同進行比較,經由實驗比較後可以發現,擋板間距縮小可使峰值在250Hz時提升,而消音材角度不同對於800Hz後才開始有顯著影響;然而,在125Hz以下,加入擋板與消音材反而皆會使消音器之消音性能變差。除此之外,消音材性質不同對於消音器之影響於800Hz後開始明顯提升,於高頻之影響則十分顯著。

關鍵字:消音器、噪音減低、擋板、消音材、角度
This study is to investigate the performance of rectangular mufflers with respect to the design parameters ― the clearance of an internal baffle, the amount of the absorbing material, and the angle of absorbing slices. Such different parameters will form various layouts of the muffler so as to compare the individual acoustical performance of noise reduction by using the experimental data results.
First of all, the clearance of the internal baffle and the amount of the absorbing material were changed. It is obvious that the muffler has significant improvement in noise reduction performance when using a larger clearance of internal baffle and absorbing material, On the contrary, the acoustical performance will be worse when a narrow clearance of the internal baffle is used. Subsequently, the influence of various absorbing slice’s angles and internal baffle’s length-clearance has been investigated by experimental work. Result reveals that the less of the clearance of the internal baffle will enable the noise reduction at the peak frequency which is around 250Hz; moreover, the influence of different angles of absorbing slices will be remarkable when the frequency is beyond 800Hz; however, either the baffle or the absorbing material is invalid for the acoustical performance when the frequency is under 125Hz. In addition, different kinds of absorbing materials will have influence at the frequency of 800Hz above and will be remarkable at a higher frequency.

Keyword: muffler、noise reduction、 baffle、absorbing materials、angle
英文摘要 i
中文摘要 ii
目錄 iii
圖目錄 x
表目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究方法 2
1.4 文獻回顧 2
第二章 理論基礎 5
2.1噪音基本理論 5
2.1.1噪音之影響 7
2.1.2噪音控制方法 8
2.2消音器之分類 8
2.2.1被動式消音器 8
2.2.1.1反射式消音器 8
2.2.1.2吸收式消音器 9
2.2.1.3共鳴式消音器 9
2.2.3主動式消音器 9
2.3消音器消音性能評估指標 10
2.3.1聲功率衰減 10
2.3.2插入損失 11
2.3.3傳輸損失 11
2.3.4噪音降低量 12
2.4頻譜圖及倍頻程 14
2.4.1頻譜圖 14
2.4.2倍頻程 15
2.5吸音係數和穿透率 18
第三章 實驗設備及方法 23
3.1 實驗設備 28
3.2儀器設備簡介 30
3.3實驗方法 38
第四章 結果與討論 39
4.1消音棉之特性量測 39
4.2噪音降低量量測擋板間距不同與消音棉數目變化值 41
4.2.1無擋板改變與消音棉數目之噪音減低量 41
4.2.2擋板間距15cm改變其音棉數目之噪音減低量 47
4.2.3擋板間距10cm改變消音棉數目之噪音減低量 51
4.2.4擋板間距5cm改變消音棉數目之噪音減低量 55
4.2.5消音器各型改變擋板間距之噪音減低量比較 59
4.3噪音減低量量測於擋板間距不同與消音棉角度變化值 71
4.3.1消音材夾角示意 71
4.3.2無擋板使用木板材之噪音減低量比較 73
4.3.3 擋板間距15cm使用木板材之噪音減低量比較 74
4.3.4 擋板間距5cm使用木板材之噪音減低量比較 75
4.3.5 無擋板使用消音材之噪音減低量比較 76
4.3.6 擋間距15cm使用消音材之噪音減低量比較 77
4.3.7 擋板間距5cm使用消音材之噪音減低量比較 78
第五章 結論 79
參考文獻83
附錄1 木板材改變角度之綜合性能討論 88
附錄2 消音棉改變角度之綜合性能討論 90
[1]L. L. Bernaek, “Noise and vibration control”, McGraw-Hill, New York, 1971.
[2]ANSI/ASTM C384-77, “Standard test method for impedance and absorption of acoustical materials by the tube method”, 1977.
[3]A. F. Seybert and D. F. Ross, “Experimental determination of acoustic properties using a two-microphone random-excitation”, J. Acoustic Soc. AM. Vol.61, pp.1362-1370, 1977.
[4]D. A. Blaser and J. Y. Chung, “A transfer function technique for measuring the acoustic characteristics of duct systems with mean flow ”, Proc. Inter-Noise, Vol.78, pp.901-908, 1977.
[5]M. L. Munjal, “Acoustics of ducts and mufflers”, John Wiley &Sons, Inc. 1987.
[6]戴禮擎, “消音器性能評估方法之解析”, 台灣科技大學機械工程所碩士論文, 2004.
[7]M. A. McCormick, “The attenuation of sound in lined rectangular ducts containing uniform flow”, Journal of Sound and Vibration, Vol.39, No.1, pp.35-41, 1974.
[8]G. R. Gogate and M. L. Munjal, “Analytical solution of sound propagation in lined or unlined circular ducts with laminar mean flow”, Journal of Sound and Vibration, Vol.160, No.3, pp.465-484, 1993.
[9]M. L. Munjal, “A simple numerical method for three-dimensional analysis of simple expansion chamber mufflers of rectangular as well as circular cross-section with a stationary medium”, Journal of Sound and Vibration, Vol.116, No.1, pp.71-88, 1987.
[10]T. W. Wu, P. Z. Zhang and C. Y. R. Cheng, “Boundary element analysis of mufflers with an improved method for deriving the four-pole parameters”, Journal of Sound and Vibration, Vol.217, No.4, pp.767-779, 1998.
[11]C. I. Chu, H. T. Hua and I. C. Liao, “Effects of three-dimensional modes on acoustic performance of reversal flow mufflers with rectangular cross-section”, Computers and Structures, Vol.79, pp.883-890, 2001.
[12]O. Z. Mehdizadeh and M. Paraschivoiu, “A three-dimensional finite element approach for predicting the transmission loss in mufflers and silencers with on mean flow”, Applied Acoustics, Vol.66, pp.902-918, 2005.
[13]C. J. Wu, X. J. Wang and H. B. Tang, “Transmission loss prediction on SIDO and DISO expansion-chamber muffler with rectangular section by using the collocation approach”, International Journal of Mechanical Sciences, Vol.49, pp.872-877, 2007.
[14]K. L. Tam and F. J. Fahy, “A theoretical and experimental investigation of sound intensity distribution within a splitter silencer, ” Journal of Sound and Vibration, Vol. 151, No.2, pp.213-246, 1991.
[15]許榮松, “矩形消音箱分隔板吸音量測研究”, 私立淡江大學水資源及環境工程所碩士論文, 1995.
[16]陳文金, “導管被覆吸音材能量損失之數值模擬”, 國立成功大學工程科學所碩士論文, 1991.
[17]游州倍, “具有內部隔板與通道之突張式消音器性能的實驗研究”,國立中興大學機械工程研究所, 1998.
[18]陳成, “市售消音器之消音性能實驗研究”, 國立台灣大學造船及海洋工程學研究所碩士論文, 1999.
[19]P. M. Morse, R. H. Bolt and R. L. Brown, “Acoustic impedance and sound absorption”, J. Accost. Soc. Am., 12/2, pp.217-227, 1940.
[20]R. H. Bolt, ”On the design of perforated facings for acoustic materials”, J. Acoust. Soc. Am., Vol.19, No.5, pp.917-921, 1947.
[21]K. U. Ingard and R. H. Bolt, “Absorption characteristics of acoustic material with perforated facings”, J. Acoust. Soc. Am., Vol.23, No.5, pp.533-540, 1951.
[22]D. B. Callaway and L. G. Ramer, “The use of perforated facings in designing low frequency resonant absorbers”, J. Acoust. Soc. Am., Vol.24, No3. pp.309-312, 1952.
[23]W. A. Davern, “Perforated facings backed with porous materials as sound absorbers-an experimental study”, Applied Acoustics, Vol.10, pp.85-112, 1977.
[24]D. Takahashi, “A new method for predicting the sound absorption of perforated absorber system”, Applied Acoustic, Vol.51 , pp.71-84, 1997
[25]L. L. Beranek, I. L. V�mr and F. P. Mechel etc, “Noise and vibration control engineering:principle and applications”, John Wiley, 1992.
[26]H. W. Lord, W. S. Gatley and H. A. Evensen, “Noise control for engineers”, McGraw-Hill, 1980.
[27]羅浩,黃河潤, “有流速時消音器傳輸損失量測之探討”,第四屆中華民國振動與噪音工程協會學術研討會, 1996.
[28]涂聰賢, 蔡國隆, “入出口管偏心配置之單膨脹室消音器流場引發噪音之探討”, 第十二屆中華民國振動與噪音工程學術研討會, 2004年6月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔