(3.210.184.142) 您好!臺灣時間:2021/05/13 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:洪士烜
研究生(外文):Shih-Hsuah Hung
論文名稱:應用ANSYS/LS-DYNA模擬正交金屬切削切屑形成機構及溫度之研究
論文名稱(外文):The Simulation of Chip Formation and Temperature in Orthogonal Metal Cutting Using ANSYS/LS-DYNA
指導教授:戴兢志
指導教授(外文):Ching-chih Tai
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:91
中文關鍵詞:有限元素分析金屬正交切削
外文關鍵詞:Finite element analysisOrthogonal metal.cutting
相關次數:
  • 被引用被引用:9
  • 點閱點閱:949
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文應用有限元素分析軟體 ANSYS/LS-DYNA 建立一套具有熱力耦合效應的金屬正交切削模型,並藉由模擬真實的金屬正交切削過程瞭解切屑形成時的應力、應變等物理量的變化,以及工件與切屑的溫度分佈,以助於提高成品尺寸精度和改善成品品質。分析模型材料採用Johnson and Cook的動態構成方程式來描述含碳量0.18%低碳鋼材料的行為,並且採用元素破壞產生的切屑剝離準則作為未變形之切屑是否自工件剝離而形成切屑的判斷標準。
研究結果顯示有限元素分析結果與實際切削實驗結果的趨勢相當接近。最大的等效塑性應變值產生在刀具-切屑接觸面,其原因為摩擦所造成;最大的等效應力值發生在主要變形區裡,顯示切削過程的變形產生在主要變形區;切屑剪切平面之剪切角會隨著切削速度的增加而增加;最高溫度則發生在刀面-切屑接觸面上且距刀尖有一定距離的地方,切削條件中以切削速度、刀具斜角、摩擦係數對切削溫度影響最大,而切削寬度、切削深度對切削溫度的影響不大,此結果與切削理論相符。
In this research, the finite element analysis software ANSYS/LS-DYNA is used to establish a thermo-mechanical coupling model to simulate the orthogonal metal cutting processes. With the aid of simulating the orthogonal metal cutting process, the variation of the stress, strain and temperature in the workpiece and the chip can be obtained during the chip formation. These results are useful to enhance the dimensional accuracy of the products and to improve the quality of the products. The Johnson and Cook dynamic constitutive material model is used to describe the behavior of the 0.18 % mild steel material. The chip separate criterion is based upon the failure criterion of the workpiece. Good correlation can be concluded between experimental and simulation with cutting force and the distribution of temperature. The largest effective plastic strain is located at the tool-chip interface because of the friction. The largest effective stress is located at the primary deformation zone. The shear angle in the shear plane will increase with the cutting velocity. The maximum temperature is occurred at a distance from the tool tip and on the tool-chip interface. Furthermore, the cutting velocity, rake angle, and the coefficient of friction have a great effect upon the temperature. The results were in good correlation with the theory of metal cutting.
致謝 I
中文摘要 II
英文摘要III
目錄 IV
圖目錄 VII
表目錄 X
第一章 概論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 7
1.4 論文架構 8
第二章 金屬切削原理 9
2.1 前言 9
2.2 切削模型 13
2.3 切屑形狀種類 15
2.4 二維切削力學理論 18
2.5 切屑幾何 20
2.6 切削熱的產生和傳出 23
第三章 有限元素分析 25
3.1 有限元素軟體ANSYS/LS-DYNA簡介 25
3.2 關鍵字文件 37
3.3 有限元素幾何模型 43
3.4 元素選擇 45
3.5 材料選擇 47
3.6 網格設定 51
3.7 限制邊界條件 53
3.8 接觸問題設定 57
3.9 切屑剝離準則 59
第四章 結果與討論 62
4.1 硬體軟體 62
4.2 分析模型驗證 62
4.3 切屑形成與切屑溫度分佈 74
4.4 分析結果與討論 76
第五章 結論展望 84
5.1 結論 84
5.2 未來研究方向 86
參考文獻 88
[1]M. E. Merchant, ”Mechanics of the metal cutting process“, J. Appl. Phys. , Vol.16, pp.267-308, 1945.
[2]L. E. Lee and D. W. Shaffer, “The theory of plastic applied to a problem of machining”, Trans. ASME J. Appl. Mech. , Vol.118, pp.405-413, 1951.
[3]E. Usui, K. Maekawa and T. Shirakashi, “Simulation analysis of built-up edge formation in machining of low carbon steel”, Bull. Japan Soc. of Prec. Eng. , Vol.15, pp.237-242, 1981.
[4]E. Usui and T. Shirakashi, “Mechanics of machining-from descriptive to predictive theory”, on the art of cutting metal-75 years layer attribute to F. W. Taylor, pp.13-30, 1982.
[5]K. Iwata, K. Osakada and Y. Terasaka, “Process modeling of orthogonal cutting by the rigid-plastic finite element method”, Trans. ASME, J. Engng. Material and Technology, Vol. 106, pp.132-138, 1984.
[6]J. S. Strenkowaski and J. T. Carroll III, “A finite element model of orthogonal metal cutting”, Trans. ASME, Journal of Engineering for Industry, Vol.107, pp.349-354, 1985.
[7]J. S. Strenkowaski and K. J. Moon, “Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting”, Trans. ASME, Journal of Engineering for Industry, Vol.127, pp.313-318, 1990.
[8]K. Komvopoulos and S. A. Erpenbeck, “Finite element modeling of orthogonal metal cutting”, Trans. ASME, Journal of Engineering for Industry, Vol.113, pp.253-267, 1991.
[9]B. Zhang and A. Bagchi, “Finite element simulation of chip formation and comparison with machining experiment”, Trans. ASME, Journal of Engineering for Industry, Vol.116, pp.289-297, 1994.
[10]A. J. Shih, “Finite element simulation of orthogonal metal cutting”, Trans. ASME, Journal of Engineering for Industry, Vol.117, pp.84-93, 1995.
[11]J. M. Huang and J. T. Black, “An evaluation of chip seperation criteria for the FEM simulation of machining”, Trans. ASME, Journal of Manufacturing Science and Engineering, Vol.118, pp.545-554, 1996.
[12]A. J. R. Smith, “Temperature prediction in orthogonal cutting with a finite difference approach”, Annals of the CIRP, 30(1): pp.9-13,1981.
[13]臼井英治 ,「切削磨削加工學」,高希正譯,北京:機械工業出版社,1982。
[14]A. Ber, “The influence of temperature gradient on cutting tool's life”,
Annals of the CIRP, 38(1): pp.69-73,1989.
[15]賴雯玲,「鎳磷合金超精密正交切削研究」,國立台灣工業科技大學機械所博士論文,1983。
[16]I. Lazoglu and Y. Altintas, “Prediction of tool and chip temperature in continuous and interrupted machining”, International Journal of Machine Tools Manufacture 42, pp.101-102,2002.
[17]傅光華,「切削工具學」,高立圖書,pp.113-135,1982。
[18]“LS-DYNA KEYWORD USER’S MANUAL”, Version 960, Vol. 1, Livermore Software Technology Corporation, March 2001.
[19]“LS-DYNA KEYWORD USER’S MANUAL”, Version 960, Vol. 2, Livermore Software Technology Corporation, March 2001.
[20]A. G.Mamalis, M. Horvath, A. S .Branis and D. E. Manolakos, “Finite element simulation of chip formation in orthogonal metal cutting”, Journal of Materials Processing Technology, Vol.110, pp.19-27, 2001.
[21]林有鎰,「應用有限元素法探討斜交切削連續切屑和不連續切屑之模式」,國立台灣工業科技大學機械所博士論文,1999。
[22]陳緯倫,「有限元素分析模擬金屬正交切削切削成形之研究」,大同大學機械工程研究所碩士論文,2003。
[23]陳偉賓,「利用LS-DYNA探討切削速度對金屬正交切削切屑形成之影響」,大同大學機械工程研究所碩士論文,2005。
[24]M. Elmadagli and A.T. Alpas, “Metallographic analysis of the deformation microstructure of copper subjected to orthogonal cutting”, Materials Science and Engineering A355, pp.249-259, 2003.
[25]K. Li, X. L. Gao and J.W. Sutherland, “Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process”, Journal of Materials Processing Technology 127, pp.309-324, 2002.
[26]K. Iwata, K. Osakada and Y. Terasaka, “Process modeling of orthogonal cutting by the rigid-plastic finite element method”, ASME Journal of Engineering Material and Technology, Vol.106, pp.132-138, 1984.
[27]G. Shi, X. Deng and C. Shet, “A finite element study of the effect of friction in orthogonal metal cutting”, Finite Elements in Analysis and Design 38,pp.863-883, 2002.
[28]劉偉鈞,「切削加工學」,東華書局,1989。
[29]趙海鷗,「LS-DYNA動力分析指南」,兵器工業出版社,2003。
[30]黃振賢,「機械材料」,文京圖書,2001。
[31]王新榮.陳時錦,「有限元素法及其應用」,中央圖書,1999。
[32]李裕春.趙遠.時黨勇,「ANSYS/LS-DYNA 10.0基礎理論與工程實踐」,中國水利水電出版社,2006。
[33]尚曉江.蘇建宇,「ANSYS/LS-DYNA 10.0動力分析方法與工程實例」,中國水利水電出版社,2006。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔